Planar Deformation Features in Quartz from the Ries Impact Crater: Advanced by Micro-Raman Spectroscopy

2011 ◽  
Vol 44 (7-8) ◽  
pp. 469-473 ◽  
Author(s):  
Arnold Gucsik ◽  
Tasuku Okumura ◽  
Masahiro Kayama ◽  
Hirotsugu Nishido ◽  
Kiyotaka Ninagawa
Author(s):  
Tsolmon Amgaa ◽  
Dieter Mader ◽  
Wolf Uwe Reimold ◽  
Christian Koeberl

ABSTRACT Tabun Khara Obo is the only currently known impact crater in Mongolia. The crater is centered at 44°07′50″N and 109°39′20″E in southeastern Mongolia. Tabun Khara Obo is a 1.3-km-diameter, simple bowl-shaped structure that is well visible in topography and clearly visible on remote-sensing images. The crater is located on a flat, elevated plateau composed of Carboniferous arc-related volcanic and volcanosedimentary rocks metamorphosed to upper amphibolite to greenschist facies (volcaniclastic sandstones, metagraywacke, quartz-feldspar–mica schist, and other schistose sedimentary rocks). Some geophysical data exist for the Tabun Khara Obo structure. The gravity data correlate well with topography. The −2.5–3 mGal anomaly is similar to that of other, similarly sized impact craters. A weak magnetic low over the crater area may be attributed to impact disruption of the regional trend. The Tabun Khara Obo crater is slightly oval in shape and is elongated perpendicular to the regional lithological and foliation trend in a northeasterly direction. This may be a result of crater modification, when rocks of the crater rim preferentially slumped along fracture planes parallel to the regional structural trend. Radial and tangential faults and fractures occur abundantly along the periphery of the crater. Breccias occur along the crater periphery as well, mostly in the E-NE parts of the structure. Monomict breccias form narrow (<1 m) lenses, and polymict breccias cover the outer flank of the eastern crater rim. While geophysical and morphological data are consistent with expectations for an impact crater, no diagnostic evidence for shock metamorphism, such as planar deformation features or shatter cones, was demonstrated by earlier authors. As it is commonly difficult to find convincing impact evidence at small craters, we carried out further geological and geophysical work in 2005–2007 and drilling in 2007–2008. Surface mapping and sampling did not reveal structural, mineralogical, or geochemical evidence for an impact origin. In 2008, we drilled into the center of the crater to a maximum depth of 206 m, with 135 m of core recovery. From the top, the core consists of 3 m of eolian sand, 137 m of lake deposits (mud, evaporites), 34 m of lake deposits (gypsum with carbonate and mud), 11 m of polymict breccia (with greenschist and gneiss clasts), and 19 m of monomict breccia (brecciated quartz-feldspar–mica schist). The breccias start at 174 m depth as polymict breccias with angular clasts of different lithologies and gradually change downward to breccias constituting the dominant lithology, until finally grading into monomict breccia. At the bottom of the borehole, we noted strongly brecciated quartz-feldspar schist. The breccia cement also changes over this interval from gypsum and carbonate cement to fine-grained clastic matrix. Some quartz grains from breccia samples from 192, 194.2, 196.4, 199.3, 201.6, and 204 m depth showed planar deformation features with impact-characteristic orientations. This discovery of unambiguous shock features in drill core samples confirms the impact origin of the Tabun Khara Obo crater. The age of the structure is not yet known. Currently, it is only poorly constrained to post-Cretaceous on stratigraphic grounds.


2020 ◽  
Author(s):  
Toshimori Sekine ◽  
Tomoko Sato ◽  
Norimasa Ozaki ◽  
Kohei Miyanishi ◽  
Ryosuke Kodama ◽  
...  

2011 ◽  
Vol 46 (5) ◽  
pp. 729-736 ◽  
Author(s):  
Ming CHEN ◽  
Christian KOEBERL ◽  
Wansheng XIAO ◽  
Xiande XIE ◽  
Dayong TAN

2014 ◽  
Vol 49 (10) ◽  
pp. 1915-1928 ◽  
Author(s):  
Grace Juliana Gonçalves de Oliveira ◽  
Marcos Alberto Rodrigues Vasconcelos ◽  
Alvaro Penteado Crósta ◽  
Wolf Uwe Reimold ◽  
Ana Maria Góes ◽  
...  

2019 ◽  
Vol 51 (3) ◽  
pp. 1163-1172 ◽  
Author(s):  
F. D. León-Cázares ◽  
C. Kienl ◽  
C. M. F. Rae

AbstractDislocations are crystal defects responsible for plastic deformation, and understanding their behavior is key to the design of materials with better properties. Electron microscopy has been widely used to characterize dislocations, but the resulting images are only two-dimensional projections of the real defects. The current work introduces a framework to determine the sample and crystal orientations from micrographs with planar deformation features (twins, stacking faults, and slip bands) in three or four non-coplanar slip systems of an fcc material. This is then extended into a methodology for the three-dimensional reconstruction of dislocations lying on planes with a known orientation that can be easily coupled with a standard Burgers vector analysis, as proved here in a nickel-based superalloy. This technique can only be used in materials that show specific deformation conditions, but it is faster than other alternatives as it relies on the manual tracing of dislocations in a single micrograph.


Sign in / Sign up

Export Citation Format

Share Document