impact origin
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 5)

H-INDEX

28
(FIVE YEARS 0)

2022 ◽  
Vol 924 (1) ◽  
pp. 6
Author(s):  
Julien Salmon ◽  
Robin M. Canup

Abstract We investigate aspects of the co-accretion + giant impact scenario proposed by Morbidelli et al. (2012) for the origin of the Uranian satellites. In this model, a regular satellite system formed during gas accretion is impulsively destabilized by a Uranus-tipping impact, producing debris that ultimately re-orients to the planet’s new equatorial plane and re-accumulates into Uranus’ current large moons. We first investigate the nodal randomization of a disk of debris resulting from disruptive collisions between the hypothesized prior satellites. Consistent with Morbidelli et al., we find that an impact-generated interior c-disk with mass ≥10−2 Uranus masses is needed to cause sufficient nodal randomization to appropriately realign the outer debris disk. We then simulate the reaccumulation of the outer debris disk into satellites and find that disks with larger initial radii are needed to produce an outer debris disk that extends to Oberon’s distance, and that Uranus’ obliquity prior to the giant impact must have been substantial, ≥40°, if its original co-accreted satellite system was broadly similar in radial scale to those at Jupiter and Saturn today. Finally, we explore the subsequent evolution of a massive, water-dominated inner c-disk as it condenses, collisionally spreads, and spawns new moons beyond the Roche limit. We find that intense tidal dissipation in Uranus (i.e., ( Q / k 2 ) U ≤ 10 2 ) is needed to prevent large icy moons spawned from the inner disk from expanding beyond the synchronous orbit, where they would be long lived and inconsistent with the lack of massive inner moons at Uranus today. We conclude that while a co-accretion + giant impact is viable it requires rather specific conditions.



Geology ◽  
2021 ◽  
Author(s):  
Ludovic Ferrière ◽  
Alvaro P. Crósta ◽  
Wencke Wegner ◽  
Eugen Libowitzky ◽  
Fabio Iwashita ◽  
...  

Natural glass occurs on Earth in different geological contexts, mainly as volcanic glass, fulgurites, and impact glass. All these different types of glasses are predominantly composed of silica with variable amounts of impurities, especially the alkalis, and differ in their water content due to their mode of formation. Distinguishing between different types of glasses, on Earth and also on the Moon and on other planetary bodies, can be challenging. This is particularly true for glasses of impact and volcanic origin. Because glass is often used for the determination of the age of geological events, even if out of geological context, as well as to derive pressure and temperature constraints, or to evaluate the volatile contents of magmas and their source regions, we rely on methods that can unambiguously distinguish between the different types of glasses. We used the case of the Cali glass, found in an extended area close to the city of Cali in western Colombia, which was previously suggested to be of impact or volcanic origin, to show that, using a multimethod approach (i.e., combining macroscopic observations, chemical and isotopic data, and H2O content), it is possible to distinguish between different formation modes. A suite of Cali glass samples was analyzed using electron microprobe, instrumental neutron activation analysis, thermal ionization mass spectrometry, and Fourier-transform infrared spectroscopy, allowing us to definitively exclude an impact origin and instead classify these glasses as a rhyolitic volcanic glass (obsidian). Our results suggest that other “unusual glass occurrences” that are claimed, but not convincingly proven, to be of impact origin should be reexamined using the same methodology as that applied here.



Author(s):  
T. Kenkmann ◽  
P.W. Haines ◽  
I.P. Sweet ◽  
K. Mitchell

ABSTRACT We report on the Cleanskin structure (18°10′00″S, 137°56′30″E), situated at the border between the Northern Territory and Queensland, Australia, and present results of preliminary geological fieldwork, microscopic analyses, and remote sensing. The Cleanskin structure is an eroded complex impact structure of ~15 km apparent diameter with a polygonal outline caused by two preexisting regional fault sets. The structure has a central uplift of ~6 km diameter surrounded by a rather shallow ring syncline. Based on stratigraphy, the uplift in the center may not exceed ~1000 m. The documentation of planar deformation features (PDFs), planar fractures (PFs), and feather features (FFs) in quartz grains from sandstone members of the Mesoproterozoic Constance Sandstone confirms the impact origin of the Cleanskin structure, as proposed earlier. The crater was most likely eroded before the Cambrian and later became buried beneath Cretaceous strata. We infer a late Mesoproterozoic to Neoproterozoic age of the impact event. In this chapter, the Cleanskin structure is compared with other midsized crater structures on Earth. Those with sandstone-dominated targets show structural similarities to the Cleanskin structure.



Author(s):  
Tsolmon Amgaa ◽  
Dieter Mader ◽  
Wolf Uwe Reimold ◽  
Christian Koeberl

ABSTRACT Tabun Khara Obo is the only currently known impact crater in Mongolia. The crater is centered at 44°07′50″N and 109°39′20″E in southeastern Mongolia. Tabun Khara Obo is a 1.3-km-diameter, simple bowl-shaped structure that is well visible in topography and clearly visible on remote-sensing images. The crater is located on a flat, elevated plateau composed of Carboniferous arc-related volcanic and volcanosedimentary rocks metamorphosed to upper amphibolite to greenschist facies (volcaniclastic sandstones, metagraywacke, quartz-feldspar–mica schist, and other schistose sedimentary rocks). Some geophysical data exist for the Tabun Khara Obo structure. The gravity data correlate well with topography. The −2.5–3 mGal anomaly is similar to that of other, similarly sized impact craters. A weak magnetic low over the crater area may be attributed to impact disruption of the regional trend. The Tabun Khara Obo crater is slightly oval in shape and is elongated perpendicular to the regional lithological and foliation trend in a northeasterly direction. This may be a result of crater modification, when rocks of the crater rim preferentially slumped along fracture planes parallel to the regional structural trend. Radial and tangential faults and fractures occur abundantly along the periphery of the crater. Breccias occur along the crater periphery as well, mostly in the E-NE parts of the structure. Monomict breccias form narrow (<1 m) lenses, and polymict breccias cover the outer flank of the eastern crater rim. While geophysical and morphological data are consistent with expectations for an impact crater, no diagnostic evidence for shock metamorphism, such as planar deformation features or shatter cones, was demonstrated by earlier authors. As it is commonly difficult to find convincing impact evidence at small craters, we carried out further geological and geophysical work in 2005–2007 and drilling in 2007–2008. Surface mapping and sampling did not reveal structural, mineralogical, or geochemical evidence for an impact origin. In 2008, we drilled into the center of the crater to a maximum depth of 206 m, with 135 m of core recovery. From the top, the core consists of 3 m of eolian sand, 137 m of lake deposits (mud, evaporites), 34 m of lake deposits (gypsum with carbonate and mud), 11 m of polymict breccia (with greenschist and gneiss clasts), and 19 m of monomict breccia (brecciated quartz-feldspar–mica schist). The breccias start at 174 m depth as polymict breccias with angular clasts of different lithologies and gradually change downward to breccias constituting the dominant lithology, until finally grading into monomict breccia. At the bottom of the borehole, we noted strongly brecciated quartz-feldspar schist. The breccia cement also changes over this interval from gypsum and carbonate cement to fine-grained clastic matrix. Some quartz grains from breccia samples from 192, 194.2, 196.4, 199.3, 201.6, and 204 m depth showed planar deformation features with impact-characteristic orientations. This discovery of unambiguous shock features in drill core samples confirms the impact origin of the Tabun Khara Obo crater. The age of the structure is not yet known. Currently, it is only poorly constrained to post-Cretaceous on stratigraphic grounds.



2021 ◽  
Author(s):  
Tobias Dürr ◽  
Harry Becker ◽  
Winfried Schwarz ◽  
Dennis Vanderliek
Keyword(s):  


2020 ◽  
Vol 178 (1) ◽  
pp. jgs2020-056
Author(s):  
G. R. Osinski ◽  
L. Ferrière ◽  
P. J. A. Hill ◽  
A. R. Prave ◽  
L. J. Preston ◽  
...  

The origin of the Stac Fada Member has been debated for decades with several early hypotheses being proposed, but all invoking some connection to volcanic activity. In 2008, the discovery of shocked quartz led to the hypothesis that the Stac Fada Member represents part the continuous ejecta blanket of a meteorite impact crater, the location of which was, and remains, unknown. In this paper, we confirm the presence of shock-metamorphosed and -melted material in the Stac Fada Member; however, we also show that its properties are unlike any other confirmed and well documented proximal impact ejecta deposits on Earth. Instead, the properties of the Stac Fada Member are most similar to the Onaping Formation of the Sudbury impact structure (Canada) and impact melt-bearing breccias from the Chicxulub impact structure (Mexico). We thus propose that, like the Sudbury and Chicxulub deposits, Melt Fuel Coolant Interactions – akin to what occur during phreatomagmatic volcanic eruptions – played a fundamental role in the origin of the Stac Fada Member. We conclude that these rocks are not primary impact ejecta but instead were deposited beyond the extent of the continuous ejecta blanket as high-energy ground-hugging sediment gravity flows.



2020 ◽  
Author(s):  
Lamine Hamai ◽  
Atmane Lamali ◽  
Abdelkrim Yelles-chaouche ◽  
Abdeslam Abtout ◽  
Abdelmadjid Nadjemi ◽  
...  

<p>Geophysics continues to play a critical role in the future discovery of terrestrial impact structures. While the signatures within these structures may not be unique, the application of geophysics can effectively characterize them, even when they are deeply eroded or completely buried underground. In the case of Maâdna crater (33°19' N, 4°19' E), among new performed geophysical surveys, a GPR technique has been especially used to explore a supposed ejecta layer. However, GPR survey results allowed the confirmation of nonexistence of such as melting materials at Maâdna crater. Nevertheless, our different scans were interpretative against the structural context of the Maâdna structure. Indeed, most of the analyzed profiles allowed us recognizing the typical deformation effects at this structure, which can also generally be encountered at any crater-like structured site. Consequently, in view to this new resulting GPR data, even we do not definitely reject an impact origin, we are still pleading for other caratering scenarios for this structure.</p>



Geosciences ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 107
Author(s):  
Gian Paolo Sighinolfi ◽  
Maurizio Barbieri ◽  
Daniele Brunelli ◽  
Romano Serra

Mineralogical and chemical investigations were carried out on intra-craterial bedrocks (Lower Devonian sandstone) and regolithic residual soil deposits present around the Amguid structure, to discuss the hypothesis of its formation through a relatively recent (about 0.1 Ma) impact event. Observations with an optical microscope on intra-craterial rocks do not unequivocally confirm the presence of impact correlated microscopic planar deformation features (PDFs) in quartz crystals. Field observations, and optical and instrumental analysis (Raman spectroscopy) on rocks and soils (including different granulometric fractions) do not provide any incontrovertible pieces of evidence of high energy impact effects or products of impact (e.g., high pressure—temperature phases, partially or totally melted materials, etc.) either in target rocks or in soils. A series of selected main and trace elements (Al, Fe, Mg, Ni, Co and Cu) were analysed on rocks and soils to evaluate the presence in these materials of extraterrestrial sources. Comparative chemical data on rocks and soils suggest that these last are significantly enriched in Fe-poor Mg-rich materials, and in Co, Ni and Cu, in the order. A large number of EDAX-SEM analyses on separated soil magnetic particles indicate an abnormally high presence of Al-free Mg-rich sub-spherical or drop-like silicate particles, showing very similar bulk chemistries compatible with forsterite olivine. Some particles were found associated with a Ni-rich iron metal phase, and this association suggests a specific extraterrestrial origin for them. Electron microscope analysis made on a large number of soil magnetic particles indicates that 98% of them are terrestrial phases (almandine garnet, tourmaline and Fe-oxides, in abundance order), whereas, only a few grains are of questionable origin. One of the Mg-rich silicate particles was found to be a forsterite (Mg = 0.86) Mn-rich (MnO: 0.23%) Cr-free olivine, almost surely of extraterrestrial sources. Electron microprobe analysis of three soil particles allowed identification of uncommon Cr-rich (Cr2O3 about 8%) spinels, poorly compatible with an origin from terrestrial sources, and in particular from local source rocks. We propose a specific extraterrestrial origin for sub-spherical olivine particles characterised by quite similar magnesian character. Excluding any derivation of these particles from interplanetary dust, two other possible extraterrestrial sources should be considered for them, i.e., either normal micrometeorite fluxes or strongly un-equilibrated, or the Vigarano type Carbonaceous (CV) chondrite meteorite material. In this case, further studies will confirm an impact origin for Amguid, as such magnesian olivine components found in soils might represent the only remnants of a vaporised projectile of ordinary non-equilibrated meteoritic composition.



GFF ◽  
2020 ◽  
Vol 142 (2) ◽  
pp. 96-99
Author(s):  
Anders Holmqvist ◽  
Carl Alwmark ◽  
Henning Dypvik ◽  
Odd Nilsen
Keyword(s):  


2020 ◽  
Author(s):  
Mao Tang ◽  
You Zhou ◽  
Yun Liu


Sign in / Sign up

Export Citation Format

Share Document