planar deformation features
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 1)

Author(s):  
M. Ebert ◽  
M.H. Poelchau ◽  
T. Kenkmann ◽  
S.P.S. Gulick ◽  
B. Hall ◽  
...  

ABSTRACT During hypervelocity impacts, target rocks are subjected to shock wave compression with high pressures and differential stresses. These differential stresses cause microscopic shear-induced deformation, which can be observed in the form of kinking, twinning, fracturing, and shear faulting in a range of minerals. The orientation of these shear-induced deformation features can be used to constrain the maximum shortening axis. Under the assumption of pure shear deformation, the maximum shortening axis is parallel to the maximum principal axis of stress, σ1, which gives the propagation direction of the shock wave that passed through a rock sample. In this study, shocked granitoids cored from the uppermost peak ring of the Chicxulub crater (International Ocean Discovery Program [IODP]/International Continental Drilling Project [ICDP] Expedition 364) were examined for structures formed by shearing. Orientations of kink planes in biotite and basal planar deformation features (PDFs) in quartz were measured with a U-stage and compared to a previous study of feather feature orientations in quartz from the same samples. In all three cases, the orientations of the shortening axis derived from these measurements were in good agreement with each other, indicating that the shear deformation features all formed in an environment with similar orientations of the maximum principal axis of stress. These structures formed by shearing are useful tools that can aid in understanding the deformational effects of the shock wave, as well as constraining shock wave propagation and postshock deformation during the cratering process.


Author(s):  
T. Kenkmann ◽  
P.W. Haines ◽  
I.P. Sweet ◽  
K. Mitchell

ABSTRACT We report on the Cleanskin structure (18°10′00″S, 137°56′30″E), situated at the border between the Northern Territory and Queensland, Australia, and present results of preliminary geological fieldwork, microscopic analyses, and remote sensing. The Cleanskin structure is an eroded complex impact structure of ~15 km apparent diameter with a polygonal outline caused by two preexisting regional fault sets. The structure has a central uplift of ~6 km diameter surrounded by a rather shallow ring syncline. Based on stratigraphy, the uplift in the center may not exceed ~1000 m. The documentation of planar deformation features (PDFs), planar fractures (PFs), and feather features (FFs) in quartz grains from sandstone members of the Mesoproterozoic Constance Sandstone confirms the impact origin of the Cleanskin structure, as proposed earlier. The crater was most likely eroded before the Cambrian and later became buried beneath Cretaceous strata. We infer a late Mesoproterozoic to Neoproterozoic age of the impact event. In this chapter, the Cleanskin structure is compared with other midsized crater structures on Earth. Those with sandstone-dominated targets show structural similarities to the Cleanskin structure.


Author(s):  
Tsolmon Amgaa ◽  
Dieter Mader ◽  
Wolf Uwe Reimold ◽  
Christian Koeberl

ABSTRACT Tabun Khara Obo is the only currently known impact crater in Mongolia. The crater is centered at 44°07′50″N and 109°39′20″E in southeastern Mongolia. Tabun Khara Obo is a 1.3-km-diameter, simple bowl-shaped structure that is well visible in topography and clearly visible on remote-sensing images. The crater is located on a flat, elevated plateau composed of Carboniferous arc-related volcanic and volcanosedimentary rocks metamorphosed to upper amphibolite to greenschist facies (volcaniclastic sandstones, metagraywacke, quartz-feldspar–mica schist, and other schistose sedimentary rocks). Some geophysical data exist for the Tabun Khara Obo structure. The gravity data correlate well with topography. The −2.5–3 mGal anomaly is similar to that of other, similarly sized impact craters. A weak magnetic low over the crater area may be attributed to impact disruption of the regional trend. The Tabun Khara Obo crater is slightly oval in shape and is elongated perpendicular to the regional lithological and foliation trend in a northeasterly direction. This may be a result of crater modification, when rocks of the crater rim preferentially slumped along fracture planes parallel to the regional structural trend. Radial and tangential faults and fractures occur abundantly along the periphery of the crater. Breccias occur along the crater periphery as well, mostly in the E-NE parts of the structure. Monomict breccias form narrow (<1 m) lenses, and polymict breccias cover the outer flank of the eastern crater rim. While geophysical and morphological data are consistent with expectations for an impact crater, no diagnostic evidence for shock metamorphism, such as planar deformation features or shatter cones, was demonstrated by earlier authors. As it is commonly difficult to find convincing impact evidence at small craters, we carried out further geological and geophysical work in 2005–2007 and drilling in 2007–2008. Surface mapping and sampling did not reveal structural, mineralogical, or geochemical evidence for an impact origin. In 2008, we drilled into the center of the crater to a maximum depth of 206 m, with 135 m of core recovery. From the top, the core consists of 3 m of eolian sand, 137 m of lake deposits (mud, evaporites), 34 m of lake deposits (gypsum with carbonate and mud), 11 m of polymict breccia (with greenschist and gneiss clasts), and 19 m of monomict breccia (brecciated quartz-feldspar–mica schist). The breccias start at 174 m depth as polymict breccias with angular clasts of different lithologies and gradually change downward to breccias constituting the dominant lithology, until finally grading into monomict breccia. At the bottom of the borehole, we noted strongly brecciated quartz-feldspar schist. The breccia cement also changes over this interval from gypsum and carbonate cement to fine-grained clastic matrix. Some quartz grains from breccia samples from 192, 194.2, 196.4, 199.3, 201.6, and 204 m depth showed planar deformation features with impact-characteristic orientations. This discovery of unambiguous shock features in drill core samples confirms the impact origin of the Tabun Khara Obo crater. The age of the structure is not yet known. Currently, it is only poorly constrained to post-Cretaceous on stratigraphic grounds.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sanna Holm-Alwmark ◽  
Carl Alwmark ◽  
Ludovic Ferrière ◽  
Matthias M. M. Meier ◽  
Sofie Lindström ◽  
...  

AbstractImpact ejecta formation and emplacement is of great importance when it comes to understanding the process of impact cratering and consequences of impact events in general. Here we present a multidisciplinary investigation of a distal impact ejecta layer, the Blockhorizont, that occurs near Bernhardzell in eastern Switzerland. We provide unambiguous evidence that this layer is impact-related by confirming the presence of shocked quartz grains exhibiting multiple sets of planar deformation features. Average shock pressures recorded by the quartz grains are ~ 19 GPa for the investigated sample. U–Pb dating of zircon grains from bentonites in close stratigraphic context allows us to constrain the depositional age of the Blockhorizont to ~ 14.8 Ma. This age, in combination with geochemical and paleontological analysis of ejecta particles, is consistent with deposition of this material as distal impact ejecta from the Ries impact structure, located ~ 180 km away, in Germany. Our observations are important for constraining models of impact ejecta emplacement as ballistically and non-ballistically transported fragments, derived from vastly different depths in the pre-impact target, occur together within the ejecta layer. These observations make the Ries ejecta one of the most completely preserved ejecta deposit on Earth for an impact structure of that size.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 231
Author(s):  
Feng Yin ◽  
Deqiu Dai

Feldspar is the most abundant mineral in the Earth’s crust and is widely distributed in rocks. It is also one of the most common minerals in meteorites. Shock-metamorphic features in feldspar are widely used to calibrate the temperature and pressure of shock events and can also provide clues for searching for impact craters on Earth. In this study, shocked alkali feldspars in the lithic breccia and suevite from Xiuyan Impact Crater were investigated using polarizing optical microscopes, Raman spectroscopy and electron microprobes to better constrain the shock history of this crater. For this study, feldspar grains occurring in gneiss clasts in the impact breccia and four shock stages were identified, e.g., weakly shocked feldspar, moderately shocked feldspar, strongly shocked feldspar, and whole rock melting. According to the shock classification system for alkali feldspar and felsic rocks, we estimated the shock pressure (SP) and post-shock temperature (PST) histories of these gneiss clasts. Weakly shocked feldspars display irregular fractures and undulatory extinction, and their shock stage is F-S2, which indicates that SP and PST are from ~5 to ~14 GPa and ~100 °C, respectively. Moderately shocked feldspars show planar deformation features and are partially transformed into diaplectic glass, which indicates that the F-S5 shock stage of SP and PST is from ~32 to ~45 GPa and 300–900 °C. Strongly shocked feldspars that occur as vesicular glass indicate a shock stage of F-S6, and the SP and PST are 45–60 GPa and 900–1500 °C, respectively. The whole felsic rock melting occurs as mixed melt glass clast and belongs to the F-S7 stage, and SP and PST are >60 GPa and >1500 °C, respectively.


2020 ◽  
Author(s):  
Toshimori Sekine ◽  
Tomoko Sato ◽  
Norimasa Ozaki ◽  
Kohei Miyanishi ◽  
Ryosuke Kodama ◽  
...  

2019 ◽  
Vol 51 (3) ◽  
pp. 1163-1172 ◽  
Author(s):  
F. D. León-Cázares ◽  
C. Kienl ◽  
C. M. F. Rae

AbstractDislocations are crystal defects responsible for plastic deformation, and understanding their behavior is key to the design of materials with better properties. Electron microscopy has been widely used to characterize dislocations, but the resulting images are only two-dimensional projections of the real defects. The current work introduces a framework to determine the sample and crystal orientations from micrographs with planar deformation features (twins, stacking faults, and slip bands) in three or four non-coplanar slip systems of an fcc material. This is then extended into a methodology for the three-dimensional reconstruction of dislocations lying on planes with a known orientation that can be easily coupled with a standard Burgers vector analysis, as proved here in a nickel-based superalloy. This technique can only be used in materials that show specific deformation conditions, but it is faster than other alternatives as it relies on the manual tracing of dislocations in a single micrograph.


Sign in / Sign up

Export Citation Format

Share Document