shatter cones
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 4)

H-INDEX

17
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gunther Kletetschka ◽  
Radana Kavkova ◽  
Hakan Ucar

AbstractThe shock exposure of the Santa Fe’s impact structure in New Mexico is evidenced by large human-size shatter cones. We discovered a new magnetic mechanism that allows a magnetic detection of plasma’s presence during the impact processes. Rock fragments from the impactites were once magnetized by a geomagnetic field. Our novel approach, based on Neel’s theory, revealed more than an order of magnitude lower magnetizations in the rocks that were exposed to the shockwave. Here we present a support for a newly proposed mechanism where the shock wave appearance can generate magnetic shielding that allow keeping the magnetic grains in a superparamagnetic-like state shortly after the shock’s exposure, and leaves the individual magnetized grains in random orientations, significantly lowering the overall magnetic intensity. Our data not only clarify how an impact process allows for a reduction of magnetic paleointensity but also inspire a new direction of effort to study impact sites, using paleointensity reduction as a new impact proxy.



Author(s):  
Morgan A. Cox ◽  
Aaron J. Cavosie ◽  
Michael Poelchau ◽  
Thomas Kenkmann ◽  
Phil A. Bland ◽  
...  

ABSTRACT The rare earth element–bearing phosphate xenotime (YPO4) is isostructural with zircon, and therefore it has been predicted that xenotime forms similar shock deformation microstructures. However, systematic characterization of the range of micro structures that form in xenotime has not been conducted previously. Here, we report a study of 25 xenotime grains from 10 shatter cones in silicified sandstone from the Spider impact structure in Western Australia. We used electron backscatter diffrac tion (EBSD) in order to characterize deformation and microstructures within xenotime. The studied grains preserve multiple sets of planar fractures, lamellar {112} deformation twins, high-angle planar deformation bands (PDBs), partially recrystallized domains, and pre-impact polycrystalline grains. Pressure estimates from micro structures in coexisting minerals (quartz and zircon) allow some broad empirical constraints on formation conditions of ~10–20 GPa to be placed on the observed microstructures in xenotime; at present, more precise formation conditions are unavailable due to the absence of experimental constraints. Results from this study indicate that the most promising microstructures in xenotime for recording shock deformation are lamellar {112} twins, polycrystalline grains, and high-angle PDBs. The {112} deformation twins in xenotime are likely to be a diagnostic shock indicator, but they may require a different stress regime than that of {112} twinning in zircon. Likewise, polycrystalline grains are suggestive of impact-induced thermal recrystallization; however, in contrast to zircon, the impact-generated polycrystalline xenotime grains here appear to have formed in the solid state, and, in some cases, they may be difficult to distinguish from diagenetic xenotime with broadly similar textures.



Author(s):  
Aaron J. Cavosie ◽  
Luigi Folco

ABSTRACT With an age of less than ~5000 yr and a diameter of 45 m, Kamil crater in Egypt is one of the youngest and smallest terrestrial impact craters known to date. Abundant evidence of shock-deformed sandstone has been reported from Kamil crater, including shatter cones, vesicular impact glass, high-pressure polymorphs of silica and car bon, planar deformation features (PDFs) and planar fractures (PFs) in quartz, dissociated zircon, melt veins, and intergranular melt, giving rise to a range of estimated shock pressures from ~20 to ~60 GPa. Here, we investigated shocked zircon from Kamil crater through characterization of microstructures in a centimeter-sized clast of shocked nonporous sandstone ejecta, previously described as containing quartz grains with PDFs and PFs, coesite, stishovite, diamond, and lechatelierite. Orientation analysis by electron backscatter diffraction (EBSD) showed that the quartz arenite consists of damaged detrital quartz grains surrounded by a matrix of either comminuted quartz or intergranular melt. Individual quartz grains are pervasively fractured (abundant PFs and PDFs); apparent isotropic crushing resulted in uniformly and highly dispersed orientation clusters on pole figures. Zircon grains are not abundant; however, four of 19 grains analyzed by EBSD contained {112} deformation twin lamellae, with individual lamellae ranging in length from 1 to 2 µm. Lengths of twin lamellae in Kamil zircon grains are anomalously short compared to those report-ed in shocked zircon from other impact structures, where individual lamellae are tens of micrometers long. Previous empirical studies have suggested that {112} twin lamellae in zircon form at ~20 GPa in non-porous target rocks, a finding supported by their coexistence, in some impactites, with high-pressure phases such as reidite. The only available experimental constraint, by diamond anvil cell, found {112} twins in zircon powder quenched at 20 GPa. The presence of coesite, stishovite, lechatelierite, and shocked quartz with PDFs in the studied sample is consistent with empirically derived pressure estimates of ~20 GPa for {112} twin formation in zircon in the ejecta sample from Kamil crater. Kamil thus represents the smallest and youngest impact structure where shock-twinned zircon has been reported. Given the apparent efficiency of {112} twin formation (21% of grains), shock-twinned zircon is here shown to provide a robust and readily identifiable record of shock deformation in a relatively common mineral at one of the smallest known terrestrial impact craters.



2020 ◽  
Author(s):  
Andreas Bechtold ◽  
◽  
Christian Koeberl ◽  
Gerhard Paar ◽  
Christoph Traxler ◽  
...  


2018 ◽  
Author(s):  
Donald G. Mikulic ◽  
◽  
Joanne Kluessendorf
Keyword(s):  


2017 ◽  
Vol 47 (4) ◽  
pp. 673-692 ◽  
Author(s):  
Grace Juliana Gonçalves de Oliveira ◽  
Marlei Antônio Carrari Chamani ◽  
Ana Maria Góes ◽  
Alvaro Penteado Crósta ◽  
Marcos Alberto Rodrigues Vasconcelos ◽  
...  

ABSTRACT: Santa Marta is a 10 km wide, reasonably well preserved, complex impact structure located in southwestern Piauí state, northeastern Brazil, with a central uplift of 3.2 km diameter. The Santa Marta structure was recently recognized as the sixth confirmed impact structure in Brazil, based on widespread occurrence of shatter cones and the presence of shock deformation features in quartz. The latter includes planar deformation features (PDF), planar fractures (PF), and feather features (FF). The structure was formed in sedimentary strata (conglomerates, sandstones, siltstones and shales) accumulated in two distinct sedimentary basins that overlap in this region: the Paleozoic Parnaíba and the Mesozoic Sanfranciscan basins. Here, we provide an overview of the geology and stratigraphy of the sedimentary successions that occur within the structure, focusing especially on the deformation aspects of the strata from the central area. This study is aimed at advancing the knowledge about Brazilian impact structures and contributing to a better comprehension of impact cratering in sedimentary targets. The deformation in the Santa Marta structure is directly related to variations in the thickness of sedimentary strata and to lithologic diversity in the interior of the structure, which determined the complexity of the deformation, including the formation of inner rings.



Geomorphology ◽  
2017 ◽  
Vol 295 ◽  
pp. 76-83 ◽  
Author(s):  
Hassane Nachit ◽  
El Hassan Abia ◽  
Costanza Bonadiman ◽  
Mario Di Martino ◽  
Carmela Vaccaro


2017 ◽  
Vol 155 (1) ◽  
pp. 193-202 ◽  
Author(s):  
E. BUCHNER

AbstractThe distinct alignment of the Steinheim Basin and the Nördlinger Ries impact structures in SW Germany and the Central European tektite strewn field suggest ENE-directed trajectories of the Ries and Steinheim impacting bodies. From impact experiments, the asymmetry of the Steinheim crater and the arrangement of structural features therein are in good agreement with features produced during an oblique impact at 30° from the horizontal. The restriction of shatter cones to the eastern segment of the Steinheim Basin crater also suggests a west–east-directed trend of the impact direction, and supports previous models that favoured such impactor trajectory.



2017 ◽  
Vol 155 (6) ◽  
pp. 1205-1229 ◽  
Author(s):  
E. BUCHNER ◽  
M. SCHMIEDER

AbstractThe ~3.8 km Steinheim Basin in SW Germany is a well-preserved complex impact structure characterized by a prominent central uplift and well-developed shatter cones that occur in different shocked target lithologies. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and electron probe microanalysis have revealed, for the first time, the occurrence of rare metals on the Steinheim shatter cone surfaces. Shatter cones produced from the Middle Jurassic (Aalenian) Opalinus Claystone (‘Opalinuston’), temporarily exposed in the central uplift in spring 2010, and shatter cones in Upper Jurassic (Oxfordian) limestones from the southeastern crater rim domain are commonly covered by faint coatings. The Opalinus Claystone shatter cone surfaces carry coatings dominated by Fe, Ca, P, S and Al, and are covered by abundant small, finely dispersed microparticles and aggregates of native gold, as well as locally elevated concentrations of Pt. On several surfaces of the claystone shatter cones, additional Fe, Ni and Co was detected. The Ca–Mn-rich coatings on the limestone shatter cone surfaces locally include patches of Fe, Ni, Co, Cu and Au in variable amounts and proportions. The intriguing coatings on the Steinheim shatter cones could either stem from the impacted Lower Jurassic to Palaeogene sedimentary target rocks; from the crystalline-metamorphic Variscan crater basement; or, alternatively, these coatings might represent altered meteoritic matter from the Steinheim impactor, possibly an iron meteorite, which may have been remobilized during post-impact hydrothermal activity. We here discuss the most plausible source for the rare metals found adherent to the shatter cone surfaces.



2016 ◽  
Vol 2 (8) ◽  
pp. e1600616 ◽  
Author(s):  
Gordon R. Osinski ◽  
Ludovic Ferrière

Meteorite impact craters are one of the most common geological features in the solar system. An impact event is a near-instantaneous process that releases a huge amount of energy over a very small region on a planetary surface. This results in characteristic changes in the target rocks, from vaporization and melting to solid-state effects, such as fracturing and shock metamorphism. Shatter cones are distinctive striated conical fractures that are considered unequivocal evidence of impact events. They are one of the most used and trusted shock-metamorphic effects for the recognition of meteorite impact structures. Despite this, there is still considerable debate regarding their formation. We show that shatter cones are present in several stratigraphic settings within and around impact structures. Together with the occurrence of complete and “double” cones, our observations are most consistent with shatter cone formation due to tensional stresses generated by scattering of the shock wave due to heterogeneities in the rock. On the basis of field mapping, we derive the relationshipDsc= 0.4Da, whereDscis the maximum spatial extent of in situ shatter cones, andDais the apparent crater diameter. This provides an important, new, more accurate method to estimate the apparent diameter of eroded complex craters on Earth. We have reestimated the diameter of eight well-known impact craters as part of this study. Finally, we suggest that shatter cones may reduce the strength of the target, thus aiding crater collapse, and that their distribution in central uplifts also records the obliquity of impact.



Sign in / Sign up

Export Citation Format

Share Document