Stereoselective synthesis of trans-3-functionalized-4-pyrazolo[5,1-b]thiazole-3-carboxylate substituted β-lactams: Potential synthons for diverse biologically active agents

2020 ◽  
Vol 50 (19) ◽  
pp. 2969-2980
Author(s):  
Shiwani Berry ◽  
Shamsher S. Bari ◽  
Pooja Yadav ◽  
Ankita Garg ◽  
Sadhika Khullar ◽  
...  
2007 ◽  
Vol 79 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Luiz C. Dias ◽  
Luciana G. de Oliveira ◽  
Paulo R. R. Meira

This paper describes the convergent and stereocontrolled asymmetric total synthesis of (+)-crocacins C and D, potent inhibitors of animal cell cultures and several yeasts and fungi, and (-)-callystatin A, a potent antitumor polyketide.


2017 ◽  
Vol 73 (7) ◽  
pp. 556-562
Author(s):  
Ewa Żesławska ◽  
Anna Jakubowska ◽  
Wojciech Nitek

Unnatural cyclic α-amino acids play an important role in the search for biologically active compounds and macromolecules. Enantiomers of natural amino acids with a D configuration are not naturally encoded, but can be chemically synthesized. The crystal structures of two enantiomers obtained by a method of stereoselective synthesis, namely (5R,8S)-8-tert-butyl-7-methoxy-8-methyl-9-oxa-6-azaspiro[4.5]decane-2,10-dione, (1), and (5S,8R)-8-tert-butyl-7-methoxy-8-methyl-9-oxa-6-azaspiro[4.5]decane-2,10-dione, (2), both C14H21NO4, were determined by X-ray diffraction. Both enantiomers crystallize isostructurally in the space group P21, with one molecule in the asymmetric unit and with the same packing motif. The crystal structures are stabilized by C—H...O hydrogen bonds, resulting in the formation of chains along the [100] and [010] directions. The conformation of the 3,6-dihydro-2H-1,4-oxazin-2-one fragment was compared with other crystal structures possessing this heterocyclic moiety. The comparison showed that the title compounds are not exceptional among structures containing the 3,6-dihydro-2H-1,4-oxazin-2-one fragment. The planar moiety was more frequently observed in derivatives in which this fragment was not condensed with other rings.


2021 ◽  
Author(s):  
David Konrad ◽  
Peter Ruehmann ◽  
Hiroyasu Ando ◽  
Belinda Hetzler ◽  
Bryan Matsuura ◽  
...  

Tetrodotoxin (TTX) is an indispensable probe in neuroscience, a biosynthetic and ecological enigma, and one of the most celebrated targets of synthetic chemistry. Here, we present a stereoselective synthesis of TTX that proceeds in 22 steps starting from a readily available glucose derivative. The central cyclohexane ring of TTX and its α-tertiary amine moiety was established via the intramolecular 1,3-dipolar cycloaddition of a nitrile oxide, followed by alkynyl addition to the resultant isoxazoline. After some carefully chosen protecting group manipulations, a ruthenium-catalyzed hydroxylactonization set the stage for the formation of its dioxa-adamantane core. Installation of the guanidine, oxidation of a primary alcohol, and late-stage epimerization of the resultant aldehyde gave a mixture of TTX and anhydro TTX. Our synthesis represents one of the most effective of TTX reported to date and could give ready access to biologically active derivatives.


2019 ◽  
Vol 5 (12) ◽  
pp. eaay1537 ◽  
Author(s):  
Cuibo Liu ◽  
Zhongxin Chen ◽  
Huan Yan ◽  
Shibo Xi ◽  
Kah Meng Yam ◽  
...  

Unprotected E-hydrazone esters are prized building blocks for the preparation of 1H-indazoles and countless other N-containing biologically active molecules. Despite previous advances, efficient and stereoselective synthesis of these compounds remains nontrivial. Here, we show that Pt single atoms anchored on defect-rich CeO2 nanorods (Pt1/CeO2), in conjunction with the alcoholysis of ammonia borane, promotes exceptionally E-selective hydrogenation of α-diazoesters to afford a wide assortment of N-H hydrazone esters with an overall turnover frequency of up to 566 hours−1 upon reaction completion. The α-diazoester substrates could be generated in situ from readily available carboxylic esters in one-pot hydrogenation reaction. Utility is demonstrated through concise, scalable synthesis of 1H-indazole–derived pharmaceuticals and their 15N-labeled analogs. The present protocol highlights a key mechanistic nuance wherein simultaneous coordination of a Pt site with the diazo N═N and ester carbonyl motifs plays a central role in controlling stereoselectivity, which is supported by density functional theory calculations.


2011 ◽  
Vol 6 (4) ◽  
pp. 1934578X1100600
Author(s):  
J. Alberto Marco ◽  
Miguel Carda

Stereoselective syntheses of five naturally occurring, pharmacologically active medium and large ring lactones are described. Key synthetic methods used were, depending on the cases, olefin metatheses, asymmetric allylations and C-glycosidations.


ChemInform ◽  
2010 ◽  
Vol 24 (51) ◽  
pp. no-no
Author(s):  
R. ANNUNZIATA ◽  
M. BENAGLIA ◽  
M. CINQUINI ◽  
F. COZZI ◽  
F. FONZINI

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xun-Shen Liu ◽  
Zhiqiong Tang ◽  
Zhiming Li ◽  
Mingjia Li ◽  
Lin Xu ◽  
...  

AbstractTetraarylethylenes exhibit intriguing photophysical properties and sulfur atom frequently play a vital role in organic photoelectric materials and biologically active compounds. Tetrasubstituted vinyl sulfides, which include both sulfur atom and tetrasubstituted alkenes motifs, might be a suitable skeleton for the discovery of the new material molecules and drug with unique functions and properties. However, how to modular synthesis these kinds of compounds is still challenging. Herein, a chemo- and stereo-selective Rh(II)-catalyzed [1,4]-acyl rearrangements of α-diazo carbonyl compounds and thioesters has been developed, providing a modular strategy to a library of 63 tetrasubstituted vinyl sulfides. In this transformation, the yield is up to 95% and the turnover number is up to 3650. The mechanism of this reaction is investigated by combining experiments and density functional theory calculation. Moreover, the “aggregation-induced emission” effect of tetrasubstituted vinyl sulfides were also investigated, which might useful in functional material, biological imaging and chemicalnsing via structural modification.


Sign in / Sign up

Export Citation Format

Share Document