A new semi-active safety control strategy for high-speed railway vehicles

2015 ◽  
Vol 53 (12) ◽  
pp. 1918-1934 ◽  
Author(s):  
Jin Guo ◽  
Zhengguo Xu ◽  
Youxian Sun
Cryogenics ◽  
2021 ◽  
pp. 103321
Author(s):  
Yuhang Yuan ◽  
Jipeng Li ◽  
Zigang Deng ◽  
Zhehao Liu ◽  
Dingding Wu ◽  
...  

2021 ◽  
Vol 65 (192) ◽  
pp. 195-202
Author(s):  
Andrzej Zbieć

In the series of articles describing the aerodynamic phenomena caused by the passage of a train, the effects of a train running at high speed on itself, on other trains, on objects on the track and on people are characterized. This impact can be of two types – generated pressure and slipstream. Apart from the literature analysis, the author’s research is also taken into account. The second part presents the effect of pressure changes on the front and side surfaces of passing trains. Conclusions concerning side windows and windscreens in high-speed railway vehicles and older type railway vehicles with lower allowable speeds and the possibility of using various rolling stock on the same lines are presented. Keywords: rolling stock, high-speed railways, aerodynamic phenomena


Author(s):  
Vladimir Shmatchenko ◽  
Pavel Plekhanov

Objective: To determine the main approaches to safety management of high-speed railway transport on the basis of modern international and domestic practices in the specified sphere. Methods: Analysis methods of security risks on railway transport were considered in accordance with modern international standards of management of interconnected indices’ complex, which include reliability, availability, maintainability and safety and cost (Life Cycle Cost – LCC) at all stages of transportation systems’ life cycle: EN 50126 (IEC 62278), EN 50128 (IEC 62279), EN 50129 (IEC 62425) and IEC 60300-3-3. Results: The main approaches to safety measures of high-speed railway lines (VSM) were detected. The former involve using a lifecycle concept of engineering systems and facilities, management methodology of RAMS/LCC interconnected indices’ complex at all stages of a life cycle, wide application of the process approach and the tools of quality and safety management systems, development and implementation of technological maturity assessment methodology for security management activities, as well as object-oriented and coherent improvement of regulatory base, the systems of administrative and control and permission authorities, technical and technological development, management of external, inland and allocated risks under market relations. Practical importance: The examined approaches of VSM safety control make it possible to obtain a priori estimates of safety control processes and thus determine the achieved level of safety together with the levels of technological maturity of railway organizations’ processes.


2012 ◽  
Vol 2012.21 (0) ◽  
pp. 75-78
Author(s):  
Hiroshi TANAKA ◽  
Ryuzo HAYASHI ◽  
Masao NAGAI ◽  
Ryohei SHIMAMUNE ◽  
Shinichi HASEGAWA ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Iman Ferestade ◽  
Habibollah Molatefi ◽  
Bijan Moaveni

High-speed railway vehicles operate much faster than traditional railway vehicles. After a four-axle high-speed railcar is modeled, an analytical solution is employed in this paper to solve dynamic equations. According to this analytical solution, the coupling of four-axle high-speed railcar equations depends strictly on the adhesion coefficient. A novel parallel control strategy is then formulated to prevent wheels from slipping and track the desired velocity profile. The proposed control strategy includes feedback linearization and sliding mode controllers to achieve the desired performance. Finally, the simulation results indicated the effectiveness of the proposed control system in the high-speed railcar such that the tracking error is less than 12%.


Sign in / Sign up

Export Citation Format

Share Document