Evaluation of dermal growth of keratinocytes derived from foreskin in co-culture condition with mesenchymal stem cells on polyurethane/gelatin/amnion scaffold

Author(s):  
Masumeh Staji ◽  
Negar Sadeghzadeh ◽  
Soheila Zamanlui ◽  
Mojgan Azarani ◽  
Ali Golchin ◽  
...  
PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1536 ◽  
Author(s):  
Norlaily Mohd Ali ◽  
Lily Boo ◽  
Swee Keong Yeap ◽  
Huynh Ky ◽  
Dilan A. Satharasinghe ◽  
...  

Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC) is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (<30 years) and aged (>60 years) donors were expanded under hypoxic (5% O2) and normal (20% O2) culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO) and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor’s age group and culture conditions can be categorized in the following order: young (hypoxia) > young (normoxia) > old aged (hypoxia) > old aged (normoxia).


2015 ◽  
Author(s):  
Norlaily Mohd Ali ◽  
Lily Boo ◽  
Swee Keong Yeap ◽  
Huynh Ky ◽  
Dilan A Satharasinghe ◽  
...  

Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC) is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (<30 years) and aged (>60 years) donors were expanded under hypoxic (5% O2) and normal (20% O2) culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO) and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor’s age group and culture conditions can be categorized in the following order: young (hypoxia)> young (normoxia) > old aged (hypoxia) > old aged (normoxia).


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Shuyun Zhang ◽  
Baolin Shi

Diabetes-triggered apoptosis of Schwann cells (SC) contributes to the degradation of diabetic peripheral neuropathy (DNP). In recent years, mesenchymal stem cells (MSC) were applied to DPN repair and it was demonstrated that paracrine secretion played a key role in neuroprotection exerted by MSC. Erythropoietin (EPO) is a potent cytokine capable of reducing apoptosis of SC. However, the expression of EPO in MSC is limited. In this study, we hypothesized that overexpression of EPO in MSC (EPO-MSC) may significantly improve their neuroprotective potentials. The EPO overexpression in MSC was achieved by lentivirus transduction. SC derived from the periphery nerve of diabetic rats were cocultured with MSC or EPO-MSC in normal or high glucose culture condition, respectively. In normal glucose culture condition, the overexpression of EPO in MSC promoted the MSC-induced restoration of SC from diabetic rats, including increases in GSH level and cell viability, decrease in TUNEL apoptosis, upregulation of antiapoptotic proteins, p-Akt, and Bcl-2, and downregulation of proapoptotic proteins, cleaved caspase-3, and Bax. The subsequent results in high glucose culture condition showed similar promotions achieved by EPO-MSC. Thus, it could be concluded that EPO-MSC possessed a potent potential in hampering apoptosis of SC, and the suppression was probably attributed to attenuating oxidative stress and regulating apoptosis related protein factors.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4230-4230
Author(s):  
Godfrey ChiFung Chan ◽  
F.Y. Mo ◽  
K.H.K. Yip ◽  
J. Li ◽  
H. Law ◽  
...  

Abstract Background & Objective: Dental implant requires osseointegration for anchoring and human’s oral cavity has plenty of bacterial oral flora. Whether these bacteria have any effects on the human mesenchymal Stem Cells (MSCs) that can differentiate into osteoblasts remains unknown. We therefore investigated the effect of bacterial endotoxins commonly found in the oral cavity and gastrointestinal tract, namely lipopolysaccharides (LPS, Escherichia coli) and lipoteichoic acid (LTA, Streptococcus pyogenes), on the proliferation and osteogenic differentiation of MSCs. Methods: Human MSCs are derived from bone marrow (BM) of normal healthy donors. The culture condition, immunophenotyping determination and tests of differentiating functions of the human MSCs were similar to what we reported previously (Li J, Br J Haematol 2004). The proliferation of MSCs under either a 3-day or a prolonged 7-day endotoxins challenge was evaluated by XTT assay. The extent of osteogenic differentiation was examined under microscopy and measured by the increase in alkaline phosphatase (ALP) activity at day 10 and the calcium mineralization/deposition per unit volume of protein at day 14. Results: There was no significant effect of LPS and LTA on the growth and proliferation of MSCs, even under a relatively high dose. However, continued LPS challenge on MSCs under osteogenic culture condition was shown to increase the ALP activity and calcium deposition in a dose-dependent manner (100ng/ml, 1 ug/ml, 10ug/ml). No such phenomenon can be identified when LTA challenge was used. Conclusions: LPS and LTA did not show any significant effect on the proliferation and growth of human MSCs. However, LPS enhanced the osteogenic differentiation of MSCs in a dose-dependent manner. Our finding suggests that the endotoxin from bacteria commonly found in the oral cavity and gut does not have any negative impact on MSCs induced osteogenesis.


2015 ◽  
Author(s):  
Norlaily Mohd Ali ◽  
Lily Boo ◽  
Swee Keong Yeap ◽  
Huynh Ky ◽  
Dilan A Satharasinghe ◽  
...  

Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC) is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (<30 years) and aged (>60 years) donors were expanded under hypoxic (5% O2) and normal (20% O2) culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO) and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor’s age group and culture conditions can be categorized in the following order: young (hypoxia)> young (normoxia) > old aged (hypoxia) > old aged (normoxia).


Sign in / Sign up

Export Citation Format

Share Document