On the normal subgroup lattice of a hypercentral p-group

1993 ◽  
Vol 21 (11) ◽  
pp. 4127-4152
Author(s):  
Franca Rinaldi
Author(s):  
Alexander N. Skiba

In this paper G always denotes a group. If K and H are subgroups of G, where K is a normal subgroup of H, then the factor group of H by K is called a section of G. Such a section is called normal, if K and H are normal subgroups of G, and trivial, if K and H are equal. We call any set S of normal sections of G a stratification of G, if S contains every trivial normal section of G, and we say that a stratification S of G is G-closed, if S contains every such a normal section of G, which is G-isomorphic to some normal section of G belonging S. Now let S be any G-closed stratification of G, and let L be the set of all subgroups A of G such that the factor group of V by W, where V is the normal closure of A in G and W is the normal core of A in G, belongs to S. In this paper we describe the conditions on S under which the set L is a sublattice of the lattice of all subgroups of G and we also discuss some applications of this sublattice in the theory of generalized finite T-groups.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 316
Author(s):  
Soheila Mahdavi ◽  
Ali Reza Ashrafi ◽  
Mohammad Ali Salahshour ◽  
Abraham Albert Ungar

In this paper, a 2-gyrogroup G(n) of order 2n, n≥3, is constructed in which every proper subgyrogroup is either a cyclic or a dihedral group. It is proved that the subgyrogroup lattice and normal subgyrogroup lattice of G(n) are isomorphic to the subgroup lattice and normal subgroup lattice of the dihedral group of order 2n, which causes us to use the name dihedral gyrogroup for this class of gyrogroups of order 2n. Moreover, all proper subgyrogroups of G(n) are subgroups.


2011 ◽  
Vol 27 (2) ◽  
pp. 193-199
Author(s):  
CAROLINA CONTIU ◽  

In this paper, we provide necessary and sufficient conditions under which a lattice is isomorphic to the subgroup lattice of an arbitrary abelian group. We also give necessary and sufficient conditions for a lattice L, to be isomorphic to the normal subgroup lattice of an arbitrary group.


2020 ◽  
Vol 23 (1) ◽  
pp. 97-101
Author(s):  
Mikhail Petrichenko ◽  
Dmitry W. Serow

Normal subgroup module f (module over the ring F = [ f ] 1; 2-diffeomorphisms) coincides with the kernel Ker Lf derivations along the field. The core consists of the trivial homomorphism (integrals of the system v = x = f (t; x )) and bundles with zero switch group Lf , obtained from the condition ᐁ( ω × f ) = 0. There is the analog of the Liouville for trivial immersion. In this case, the core group Lf derivations along the field replenished elements V ( z ), such that ᐁz = ω × f. Hence, the core group Lf updated elements helicoid (spiral) bundles, in particular, such that f = ᐁU. System as an example Crocco shown that the canonical system does not permit the trivial embedding: the canonical system of equations are the closure of the class of systems that permit a submersion.


Author(s):  
A. L. Carey ◽  
W. Moran

AbstractLet G be a second countable locally compact group possessing a normal subgroup N with G/N abelian. We prove that if G/N is discrete then G has T1 primitive ideal space if and only if the G-quasiorbits in Prim N are closed. This condition on G-quasiorbits arose in Pukanzky's work on connected and simply connected solvable Lie groups where it is equivalent to the condition of Auslander and Moore that G be type R on N (-nilradical). Using an abstract version of Pukanzky's arguments due to Green and Pedersen we establish that if G is a connected and simply connected Lie group then Prim G is T1 whenever G-quasiorbits in [G, G] are closed.


2019 ◽  
Vol 31 (3) ◽  
pp. 769-777
Author(s):  
Jairo Z. Gonçalves

Abstract Let k be a field, let {\mathfrak{A}_{1}} be the k-algebra {k[x_{1}^{\pm 1},\dots,x_{s}^{\pm 1}]} of Laurent polynomials in {x_{1},\dots,x_{s}} , and let {\mathfrak{A}_{2}} be the k-algebra {k[x,y]} of polynomials in the commutative indeterminates x and y. Let {\sigma_{1}} be the monomial k-automorphism of {\mathfrak{A}_{1}} given by {A=(a_{i,j})\in GL_{s}(\mathbb{Z})} and {\sigma_{1}(x_{i})=\prod_{j=1}^{s}x_{j}^{a_{i,j}}} , {1\leq i\leq s} , and let {\sigma_{2}\in{\mathrm{Aut}}_{k}(k[x,y])} . Let {D_{i}} , {1\leq i\leq 2} , be the ring of fractions of the skew polynomial ring {\mathfrak{A}_{i}[X;\sigma_{i}]} , and let {D_{i}^{\bullet}} be its multiplicative group. Under a mild restriction for {D_{1}} , and in general for {D_{2}} , we show that {D_{i}^{\bullet}} , {1\leq i\leq 2} , contains a free subgroup. If {i=1} and {s=2} , we show that a noncentral normal subgroup N of {D_{1}^{\bullet}} contains a free subgroup.


Author(s):  
M. Ferrara ◽  
M. Trombetti

AbstractLet G be an abelian group. The aim of this short paper is to describe a way to identify pure subgroups H of G by looking only at how the subgroup lattice $$\mathcal {L}(H)$$ L ( H ) embeds in $$\mathcal {L}(G)$$ L ( G ) . It is worth noticing that all results are carried out in a local nilpotent context for a general definition of purity.


Author(s):  
Jiahao Qiu ◽  
Jianjie Zhao

AbstractIn this paper, it is shown that for a minimal system (X, G), if H is a normal subgroup of G with finite index n, then X can be decomposed into n components of closed sets such that each component is minimal under H-action. Meanwhile, we prove that for a residual set of points in a minimal system with finitely many commuting homeomorphisms, the set of return times to any non-empty open set contains arbitrarily long geometric progressions in multidimension, extending a previous result by Glasscock, Koutsogiannis and Richter.


Sign in / Sign up

Export Citation Format

Share Document