Binuclear ruthenium(II) complexes of 4,4′-azopyridine bridging ligand as anticancer agents: synthesis, characterization, and in vitro cytotoxicity studies

2019 ◽  
Vol 72 (16) ◽  
pp. 2617-2635 ◽  
Author(s):  
Priyanka Khanvilkar ◽  
Ramadevi Pulipaka ◽  
Kavita Shirsath ◽  
Ranjitsinh Devkar ◽  
Debjani Chakraborty
2020 ◽  
Vol 10 (5) ◽  
pp. 577-590
Author(s):  
Jai B. Sharma ◽  
Shailendra Bhatt ◽  
Asmita Sharma ◽  
Manish Kumar

Background: The potential use of nanocarriers is being explored rapidly for the targeted delivery of anticancer agents. Curcumin is a natural polyphenolic compound obtained from rhizomes of turmeric, belongs to family Zingiberaceae. It possesses chemopreventive and chemotherapeutic activity with low toxicity in almost all types of cancer. The low solubility and bioavailability of curcumin make it unable to use for the clinical purpose. The necessity of an effective strategy to overcome the limitations of curcumin is responsible for the development of its nanocarriers. Objective: This study is aimed to review the role of curcumin nanocarriers for the treatment of cancer with special emphasis on cellular uptake and in vitro cytotoxicity studies. In addition to this, the effect of various ligand conjugated curcumin nanoparticles on different types of cancer was also studied. Methods: A systematic review was conducted by extensively surfing the PubMed, science direct and other portals to get the latest update on recent development in nanocarriers of curcumin. Results: The current data from recent studies showed that nanocarriers of curcumin resulted in the targeted delivery, higher efficacy, enhanced bioavailability and lower toxicity. The curcumin nanoparticles showed significant inhibitory effects on cancer cells as compared to free curcumin. Conclusion: It can be concluded that bioavailability of curcumin and its cytotoxic effect to cancer cells can be enhanced by the development of curcumin based nanocarriers and it was found to be a potential drug delivery technique for the treatment of cancer.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7341
Author(s):  
Manmath Narwane ◽  
Dorothy Priyanka Dorairaj ◽  
Yu-Lun Chang ◽  
Ramasamy Karvembu ◽  
Yu-Han Huang ◽  
...  

Zn(II) complexes bearing tris[3-(2-pyridyl)-pyrazolyl] borate (Tppy) ligand (1–3) was synthesized and examined by spectroscopic and analytical tools. Mononuclear [TppyZnCl] (1) has a Zn(II) centre with one arm (pyrazolyl-pyridyl) dangling outside the coordination sphere which is a novel finding in TppyZn(II) chemistry. In complex [TppyZn(H2O)][BF4] (2) hydrogen bonding interaction of aqua moiety stabilizes the dangling arm. In addition, solution state behaviour of complex 1 confirms the tridentate binding mode and reactivity studies show the exogenous axial substituents used to form the [TppyZnN3] (3). The complexes (1–3) were tested for their ability to bind with Calf thymus (CT) DNA and Bovine serum albumin (BSA) wherein they revealed to exhibit good binding constant values with both the biomolecules in the order of 104–105 M−1. The intercalative binding mode with CT DNA was confirmed from the UV-Visible absorption, viscosity, and ethidium bromide (EB) DNA displacement studies. Further, the complexes were tested for in vitro cytotoxic ability on four triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-MB-468, HCC1937, and Hs 578T). All three complexes (1–3) exhibited good IC50 values (6.81 to 16.87 μM for 24 h as seen from the MTS assay) results which indicated that these complexes were found to be potential anticancer agents against the TNBC cells.


2014 ◽  
Vol 73 ◽  
pp. 8-17 ◽  
Author(s):  
Kazem Karami ◽  
Mahboubeh Hosseini-Kharat ◽  
Hojjat Sadeghi-Aliabadi ◽  
Janusz Lipkowski ◽  
Mina Mirian

2020 ◽  
Vol 20 (6) ◽  
pp. 700-708
Author(s):  
Mitra Korani ◽  
Sara Nikoofal-Sahlabadi ◽  
Amin R. Nikpoor ◽  
Solmaz Ghaffari ◽  
Hossein Attar ◽  
...  

Aims: Here, three liposomal formulations of DPPC/DPPG/Chol/DSPE-mPEG2000 (F1), DPPC/DPPG/Chol (F2) and HSPC/DPPG/Chol/DSPE-mPEG2000 (F3) encapsulating BTZ were prepared and characterized in terms of their size, surface charge, drug loading, and release profile. Mannitol was used as a trapping agent to entrap the BTZ inside the liposomal core. The cytotoxicity and anti-tumor activity of formulations were investigated in vitro and in vivo in mice bearing tumor. Background: Bortezomib (BTZ) is an FDA approved proteasome inhibitor for the treatment of mantle cell lymphoma and multiple myeloma. The low solubility of BTZ has been responsible for the several side effects and low therapeutic efficacy of the drug. Encapsulating BTZ in a nano drug delivery system; helps overcome such issues. Among NDDSs, liposomes are promising diagnostic and therapeutic delivery vehicles in cancer treatment. Objective: Evaluating anti-tumor activity of bortezomib liposomal formulations. Methods: Data prompted us to design and develop three different liposomal formulations of BTZ based on Tm parameter, which determines liposomal stiffness. DPPC (Tm 41°C) and HSPC (Tm 55°C) lipids were chosen as variables associated with liposome rigidity. In vitro cytotoxicity assay was then carried out for the three designed liposomal formulations on C26 and B16F0, which are the colon and melanoma cancer mouse-cell lines, respectively. NIH 3T3 mouse embryonic fibroblast cell line was also used as a normal cell line. The therapeutic efficacy of these formulations was further assessed in mice tumor models. Result: MBTZ were successfully encapsulated into all the three liposomal formulations with a high entrapment efficacy of 60, 64, and 84% for F1, F2, and F3, respectively. The findings showed that liposomes mean particle diameter ranged from 103.4 to 146.8nm. In vitro cytotoxicity studies showed that liposomal-BTZ formulations had higher IC50 value in comparison to free BTZ. F2-liposomes with DPPC, having lower Tm of 41°C, showed much higher anti-tumor efficacy in mice models of C26 and B16F0 tumors compared to F3-HSPC liposomes with a Tm of 55°C. F2 formulation also enhanced mice survival compared with untreated groups, either in BALB/c or in C57BL/6 mice. Conclusion: Our findings indicated that F2-DPPC-liposomal formulations prepared with Tm close to body temperature seem to be effective in reducing the side effects and increasing the therapeutic efficacy of BTZ and merits further investigation.


2014 ◽  
Vol 24 (2) ◽  
pp. 553-562 ◽  
Author(s):  
A. Srikanth ◽  
S. Sarveswari ◽  
V. Vijayakumar ◽  
P. Gridharan ◽  
S. Karthikeyan

2005 ◽  
Vol 23 (7) ◽  
pp. 1555-1563 ◽  
Author(s):  
Susan M. Blaney ◽  
Frank M. Balis ◽  
Stacey Berg ◽  
Carola A.S. Arndt ◽  
Richard Heideman ◽  
...  

Purpose Preclinical studies of mafosfamide, a preactivated cyclophosphamide analog, were performed to define a tolerable and potentially active target concentration for intrathecal (IT) administration. A phase I and pharmacokinetic study of IT mafosfamide was performed to determine a dose for subsequent phase II trials. Patients and Methods In vitro cytotoxicity studies were performed in MCF-7, Molt-4, and rhabdomyosarcoma cell lines. Feasibility and pharmacokinetic studies were performed in nonhuman primates. These preclinical studies were followed by a phase I trial in patients with neoplastic meningitis. There were five dose levels ranging from 1 mg to 6.5 mg. Serial CSF samples were obtained for pharmacokinetic studies in a subset of patients with Ommaya reservoirs. Results The cytotoxic target exposure for mafosfamide was 10 μmol/L. Preclinical studies demonstrated that this concentration could be easily achieved in ventricular CSF after intraventricular dosing. In the phase I clinical trial, headache was the dose-limiting toxicity. Headache was ameliorated at 5 mg by prolonging the infusion rate to 20 minutes, but dose-limiting headache occurred at 6.5 mg dose with prolonged infusion. Ventricular CSF mafosfamide concentrations at 5 mg exceeded target cytotoxic concentrations after an intraventricular dose, but lumbar CSF concentrations 2 hours after the dose were less than 10 μmol/L. Therefore, a strategy to alternate dosing between the intralumbar and intraventricular routes was tested. Seven of 30 registrants who were assessable for response had a partial response, and six had stable disease. Conclusion The recommended phase II dose for IT mafosfamide, administered without concomitant analgesia, is 5 mg over 20 minutes.


Sign in / Sign up

Export Citation Format

Share Document