EFFECT OF MgO CONCENTRATION IN SOLID REACTANTS ON DECOMPOSITION TREATMENT OF HALON 1301

2004 ◽  
Vol 191 (12) ◽  
pp. 1671-1685
Author(s):  
A. TAKEUCHI ◽  
S. KATO ◽  
T. WATANABE
2021 ◽  
pp. 073490412110301
Author(s):  
Yawei Wang ◽  
Gaowan Zou ◽  
Conglin Liu ◽  
Y Gao

The Halon 1301 fixed gas fire extinguishing system used in ship engine rooms has been banned from production all over the world, because halon destroys the ozone layer. Therefore, it is necessary to find an environmentally friendly, compatible and efficient alternative firefighting system. In this study, we performed fire extinguishing tests in an ISO9705 standard room for four alternative fire extinguishing agents, as well as Halon 1301. The fire extinguishing efficiency of each agent was determined based on its cooling effect, dilution effect of oxygen concentration, the extinguishing time of the oil pool fire and the re-ignition probability of the wood stack. The test results provide data support for the selection of alternatives of Halon 1301 from the aspect of fire extinguishing efficiency. Among these results, Novec 1230 had the best ability to put out the oil pool fire, and HFC-227ea suppressed the wood stack fire the best. The difference between the cooling ability of each fire extinguishing agent was small, and the inert gas (IG-541) displayed the best ability to dilute oxygen. Hot aerosol required the longest time to extinguish fire. Consequently, under the existing design standards, HFC-227ea had the better firefighting efficiency, more suitable to replace Halon 1301.


2006 ◽  
Vol 32 (2) ◽  
pp. 190-195 ◽  
Author(s):  
Wataru Minami ◽  
Hiroki Fujii ◽  
Hee-Joon Kim

1996 ◽  
Vol 8 (2) ◽  
pp. 45-63 ◽  
Author(s):  
J. Z. Su ◽  
A. K. Kim ◽  
J. R. Mawhinney
Keyword(s):  

1972 ◽  
Vol 8 (4) ◽  
pp. 269-277 ◽  
Author(s):  
H. V. Williamson
Keyword(s):  

1993 ◽  
Vol 11 (5) ◽  
pp. 407-420 ◽  
Author(s):  
A. Tewarson ◽  
M.M. Khan

Halon 1301 flame extinction results are discussed for the com bustion of polymethylmethacrylate (PMMA), eight composite materials, and carbon in the gas phase. Two types of combustion and flame extinction experi ments were performed: (1) in the Factory Mutual Research Corporation (FMRC) flammability apparatus (50 kW scale) for PMMA and composite materials, and (2) in the FMRC electrical arc apparatus for carbon in the gas phase. For char forming composite materials, mass transfer from the surface was low, turbulent diffusion flames were not generated, and flame extinction oc curred between 3 to 4.5% of Halon 1301, close to the value reported for the lam inar diffusion flames of polymers. For non-charring PMMA, mass transfer from the surface was high, flames were turbulent, and flame extinction was found at about 6% of Halon 1301, contrary to the accepted value of about 4% for the lam inar diffusion flames of polymers. With Halon 1301 the conditions for flame in stability and extinction for combustion efficiency less than about 0.40, with sig nificant increase in the amounts of products of incomplete combustion (such as CO and hydrocarbon), were in agreement with flame instability and extinction found for fuel-rich conditions inside well-ventilated laminar and turbulent diffusion flames, in ceiling layers of combustion products, in enclosure fires, in ventilation-controlled buoyant diffusion flames of polymers, and for flame ex tinction of heptane flames by water. Experiments in the FMRC electrical arc apparatus showed that in the gas phase combustion of carbon vapors generated in high energy arc, chemical heat release rate and combustion efficiency decreased with increase in Halon 1301. At about 7.5% of Halon 1301, conditions were close to flame extinction and at 9.0%, oxidative pyrolysis of carbon was indicated. Concentrations of Br- and F- ions, generated from the decomposition of Halon 1301, were also measured. Concentration of Br- ions was higher than the concentration of F- ions, al though there are three F atoms and only one Br atom in Halon 1301. There was brown deposit on the walls of the apparatus with extensive corrosion of rubber gaskets, electrical fan, and other components. The techniques discussed in this article appear to be attractive for the assess ment of flame extinguishability and corrosive characteristics of fire suppres sants to replace ozone layer depleting Halons.


2015 ◽  
Vol 19 (6) ◽  
pp. 2775-2789 ◽  
Author(s):  
M. Beyer ◽  
R. van der Raaij ◽  
U. Morgenstern ◽  
B. Jackson

Abstract. Groundwater dating is an important tool to assess groundwater resources in regards to their dynamics, i.e. direction and timescale of groundwater flow and recharge, contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However, ambiguous age interpretations are often faced, due to a limited set of available tracers and their individual restricted application ranges. For more robust groundwater dating multiple tracers need to be applied complementarily (or other characterisation methods need to be used to complement tracer information). It is important that additional, groundwater age tracers are found to ensure robust groundwater dating in future. We have recently suggested that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate, but its behaviour in water and suitability as a groundwater age tracer had not yet been assessed in detail. In this study, we determined Halon-1301 and inferred age information in 17 New Zealand groundwater samples and various modern (river) water samples. The samples were simultaneously analysed for Halon-1301 and SF6, which allowed for identification of issues such as contamination of the water with modern air during sampling. All analysed groundwater sites had also been previously dated with tritium, CFC-12, CFC-11 and SF6, and exhibited mean residence times ranging from modern (close to 0 years) to over 100 years. The investigated groundwater samples ranged from oxic to highly anoxic. All samples with available CFC data were degraded and/or contaminated in one or both of CFC-11 and CFC-12. This allowed us to make a first attempt of assessing the conservativeness of Halon-1301 in water, in terms of presence of local sources and its sensitivity towards degradation, which could affect the suitability of Halon-1301 as groundwater age tracer. Overall we found Halon-1301 reliably inferred the mean residence time of groundwater recharged between 1980 and 2014. Where direct age comparison could be made 71% of mean age estimates for the studied groundwater sites were in agreement with ages inferred from tritium and SF6 (within an uncertainty of 1 standard deviation). The remaining (anoxic) sites showed reduced concentrations of Halon-1301 along with even further reduced concentrations of CFCs. The reason(s) for this need to be further assessed, but are likely to be caused by sorption or degradation of the compounds. Despite some groundwater samples showing evidence of contamination from industrial or agricultural sources (inferred by elevated CFC concentrations), no sample showed a significantly elevated concentration of Halon-1301, which suggests no local anthropogenic or geologic sources of Halon-1301 contamination.


Sign in / Sign up

Export Citation Format

Share Document