scholarly journals Assessment of Halon-1301 as a groundwater age tracer

2015 ◽  
Vol 19 (6) ◽  
pp. 2775-2789 ◽  
Author(s):  
M. Beyer ◽  
R. van der Raaij ◽  
U. Morgenstern ◽  
B. Jackson

Abstract. Groundwater dating is an important tool to assess groundwater resources in regards to their dynamics, i.e. direction and timescale of groundwater flow and recharge, contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However, ambiguous age interpretations are often faced, due to a limited set of available tracers and their individual restricted application ranges. For more robust groundwater dating multiple tracers need to be applied complementarily (or other characterisation methods need to be used to complement tracer information). It is important that additional, groundwater age tracers are found to ensure robust groundwater dating in future. We have recently suggested that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate, but its behaviour in water and suitability as a groundwater age tracer had not yet been assessed in detail. In this study, we determined Halon-1301 and inferred age information in 17 New Zealand groundwater samples and various modern (river) water samples. The samples were simultaneously analysed for Halon-1301 and SF6, which allowed for identification of issues such as contamination of the water with modern air during sampling. All analysed groundwater sites had also been previously dated with tritium, CFC-12, CFC-11 and SF6, and exhibited mean residence times ranging from modern (close to 0 years) to over 100 years. The investigated groundwater samples ranged from oxic to highly anoxic. All samples with available CFC data were degraded and/or contaminated in one or both of CFC-11 and CFC-12. This allowed us to make a first attempt of assessing the conservativeness of Halon-1301 in water, in terms of presence of local sources and its sensitivity towards degradation, which could affect the suitability of Halon-1301 as groundwater age tracer. Overall we found Halon-1301 reliably inferred the mean residence time of groundwater recharged between 1980 and 2014. Where direct age comparison could be made 71% of mean age estimates for the studied groundwater sites were in agreement with ages inferred from tritium and SF6 (within an uncertainty of 1 standard deviation). The remaining (anoxic) sites showed reduced concentrations of Halon-1301 along with even further reduced concentrations of CFCs. The reason(s) for this need to be further assessed, but are likely to be caused by sorption or degradation of the compounds. Despite some groundwater samples showing evidence of contamination from industrial or agricultural sources (inferred by elevated CFC concentrations), no sample showed a significantly elevated concentration of Halon-1301, which suggests no local anthropogenic or geologic sources of Halon-1301 contamination.

2015 ◽  
Vol 12 (1) ◽  
pp. 1397-1436
Author(s):  
M. Beyer ◽  
R. van der Raaij ◽  
U. Morgenstern ◽  
B. Jackson

Abstract. Groundwater dating is an important tool to assess groundwater resources in regards to their dynamics, i.e. direction and time scale of groundwater flow and recharge, to assess contamination risks and manage remediation. To infer groundwater age information, a combination of different environmental tracers, such as tritium and SF6, are commonly used. However, ambiguous age interpretations are often faced, due to a limited set of available tracers and their individual restricted application ranges. For more robust groundwater dating multiple tracers need to be applied complementarily and it is vital that additional, groundwater age tracers are found to ensure robust groundwater dating in future. We recently suggested that Halon-1301, a water soluble and entirely anthropogenic gaseous substance, may be a promising candidate, but its behaviour in water and suitability as a groundwater age tracer had not yet been assessed in detail. In this study, we determine Halon-1301 and infer age information in 17 New Zealand groundwaters and various modern (river) water samples. The samples are simultaneously analysed for Halon-1301 and SF6, which allows identification of issues such as contamination of the water with modern air during sampling. Water at all analysed groundwater sites have also been previously dated with tritium, CFC-12, CFC-11 and SF6, and exhibit mean residence times ranging from modern (close to 0 years) to over 100 years. The investigated groundwater ranged from oxic to highly anoxic, and some showed evidence of CFC contamination or degradation. This allowed us to make a first attempt of assessing the conservativeness of Halon-1301 in water, in terms of presence of local sources and its sensitivity towards degradation etc., which could affect the suitability of Halon-1301 as groundwater age tracer. Overall we found Halon-1301 reliably inferred the mean residence time of groundwater recharged between 1980 and 2014. Where direct age comparison could be made 71% of mean age estimates for the studied groundwater sites were in agreement with ages inferred from tritium and SF6 (within ± 2 years). The remaining (anoxic) sites showed reduced concentrations of Halon-1301 along with even further reduced concentrations of CFCs. The reason(s) for this need to be further assessed, but are likely to be caused by sorption or degradation of the compounds. Despite some groundwater samples showing evidence of contamination from industrial or agricultural sources via elevated CFC concentrations, no sample indicated significantly elevated concentration of Halon-1301, which may indicate a lack of local anthropogenic or geologic sources of Halon-1301 contamination.


2021 ◽  
Author(s):  
◽  
Monique Beyer

<p>Groundwater age or residence time is the time water has resided in the subsurface since recharge. Depending on the application, this definition may or may not include travel through the unsaturated zone. The determination of groundwater age can aid understanding and characterization of groundwater resources, because it can provide information on e.g. groundwater mixing and flow, and volumes of groundwater and recharge. Groundwater age can be inferred from environmental tracers, such as SF₆ and tritium, that have a known input to groundwater and/or undergo known alteration processes in groundwater. The currently used age tracers face limitations regarding their application range and reliability. For example, some age tracers have local sources that can lead to contamination of groundwater. This contamination can result in misleading estimates of age. Other tracers have ambiguous inputs to groundwater, which can result in ambiguous age estimations. To reduce these limitations, it is now recognized that multiple tracers should be applied complementarily. There is also a need for new groundwater age tracers and/or new groundwater dating techniques to supplement the existing ones. Cost-effective and easily applicable tracers/techniques are preferred, since most established groundwater dating techniques are very costly and/or complex. Commonly measured hydrochemistry parameters , such as the concentrations of major ions and pH, have been suggested as cost-effective and easily determinable potential age tracers. To date, the use of commonly measured hydrochemistry parameters as independent age tracer has only been demonstrated for water recharged weeks to months ago relying on seasonal changes. Other studies applied commonly measured hydrochemistry complementarily to established age tracers to better constrain groundwater age and/or better understand and predict anthropogenic effects on groundwater quality. Further study is needed to assess the extent to which commonly measured hydrochemistry can be used to reduce uncertainty in tracer-inferred age as well as the extent to which commonly measured hydrochemistry can be used to extrapolate tracer-inferred age.  In addition to tracer specific limitations, quantification of uncertainty and ambiguity is not standard in age modelling. Although a few studies have attempted to quantify uncertainty in age modelling with the aid of probabilistic approaches, their methods are often relatively complex and not transferrable to the many cases with little available data. Uncertainties in the tracer’s recharge estimate and identification of appropriate model components, such as the objective function, have not been considered. Studies in other areas of hydrological modelling, where probabilistic approaches are more commonly used, have highlighted the need for careful identification of model components.</p>


2021 ◽  
Author(s):  
◽  
Monique Beyer

<p>Groundwater age or residence time is the time water has resided in the subsurface since recharge. Depending on the application, this definition may or may not include travel through the unsaturated zone. The determination of groundwater age can aid understanding and characterization of groundwater resources, because it can provide information on e.g. groundwater mixing and flow, and volumes of groundwater and recharge. Groundwater age can be inferred from environmental tracers, such as SF₆ and tritium, that have a known input to groundwater and/or undergo known alteration processes in groundwater. The currently used age tracers face limitations regarding their application range and reliability. For example, some age tracers have local sources that can lead to contamination of groundwater. This contamination can result in misleading estimates of age. Other tracers have ambiguous inputs to groundwater, which can result in ambiguous age estimations. To reduce these limitations, it is now recognized that multiple tracers should be applied complementarily. There is also a need for new groundwater age tracers and/or new groundwater dating techniques to supplement the existing ones. Cost-effective and easily applicable tracers/techniques are preferred, since most established groundwater dating techniques are very costly and/or complex. Commonly measured hydrochemistry parameters , such as the concentrations of major ions and pH, have been suggested as cost-effective and easily determinable potential age tracers. To date, the use of commonly measured hydrochemistry parameters as independent age tracer has only been demonstrated for water recharged weeks to months ago relying on seasonal changes. Other studies applied commonly measured hydrochemistry complementarily to established age tracers to better constrain groundwater age and/or better understand and predict anthropogenic effects on groundwater quality. Further study is needed to assess the extent to which commonly measured hydrochemistry can be used to reduce uncertainty in tracer-inferred age as well as the extent to which commonly measured hydrochemistry can be used to extrapolate tracer-inferred age.  In addition to tracer specific limitations, quantification of uncertainty and ambiguity is not standard in age modelling. Although a few studies have attempted to quantify uncertainty in age modelling with the aid of probabilistic approaches, their methods are often relatively complex and not transferrable to the many cases with little available data. Uncertainties in the tracer’s recharge estimate and identification of appropriate model components, such as the objective function, have not been considered. Studies in other areas of hydrological modelling, where probabilistic approaches are more commonly used, have highlighted the need for careful identification of model components.</p>


2017 ◽  
Vol 21 (8) ◽  
pp. 4213-4231 ◽  
Author(s):  
Monique Beyer ◽  
Uwe Morgenstern ◽  
Rob van der Raaij ◽  
Heather Martindale

Abstract. We recently discovered a new groundwater age tracer, Halon-1301, which can be used to date groundwater recharged after the 1970s. In a previous study, we showed that Halon-1301 reliably inferred groundwater age at the majority of groundwater sites studied. At those sites, ages inferred from Halon-1301 agreed with those inferred from SF6 and tritium, two reliable widely applied groundwater age tracers. A few samples, however, showed reduced concentrations of Halon-1301, preventing meaningful age interpretation from its concentration. These reduced concentrations were likely a result of degradation or retardation of Halon-1301 in the aquifer. However, we could not provide full evidence for this due to the limited number of groundwater samples analysed (18 in total). In this study, we assess the potential of Halon-1301 as a groundwater age tracer for a larger dataset of groundwater samples under specific groundwater conditions, including highly anoxic young groundwater which can significantly degrade Halon-1301, to gain more information on the magnitude of occurrence and the causes of reduced Halon-1301 concentrations. In this study, we analysed 302 groundwater samples for Halon-1301, SF6, tritium and the CFCs CFC-11, CFC-12 and CFC-113. Comparison of age information inferred from the concentrations of these tracers allows assessment of the performance of Halon-1301 compared to other well established and widely used age tracers. The samples are taken from different groundwater environments in New Zealand and include anoxic and oxic waters with mean residence times ranging from < 2 years to over 150 years (tritium-free). The majority of assessed samples have reduced or elevated concentrations of CFCs, which makes it impossible to infer a reliable age using the CFCs for these samples. Halon-1301, however, reliably infers ages for CFC-contaminated waters. Three other groundwater samples were found to have elevated SF6 concentrations (contaminated). Again, at these SF6-contaminated sites, ages inferred from Halon-1301 agree with ages inferred from tritium. A few samples (14 sites) exhibit reduced concentrations of Halon-1301, which result in elevated inferred Halon-1301 ages in comparison to those inferred from SF6, tritium and/or CFC-113. Assessment of the groundwater environment at these sites gives further insight into the potential causes of Halon-1301 reduction in groundwater. Overall, Halon-1301 gives age information that matches ages inferred from SF6 and/or tritium for the majority (97 %) of the assessed groundwater sites. These findings suggest that Halon-1301 is a reasonably reliable groundwater age tracer, and is in particular significantly more reliable than the CFCs, which may have contamination and degradation problems. Halon-1301 thus has potential to become a useful groundwater age tracer where SF6 and the CFCs are compromised, and where additional independent tracers are needed to constrain complex mixing models.


2017 ◽  
Author(s):  
Monique Beyer ◽  
Uwe Morgenstern ◽  
Rob van der Raaij ◽  
Heather Martindale

Abstract. We recently discovered a new groundwater age tracer, Halon-1301, which can be used to date groundwater recharged after the 1970s. In a previous study, we showed that Halon-1301 reliably inferred groundwater age at the majority of studied groundwater sites. At those sites, ages inferred from Halon-1301 agreed with those inferred from SF6 and tritium, two reliable widely applied groundwater age tracers. A few samples, however, showed reduced concentrations of Halon-1301, preventing meaningful age interpretation from its concentration. These reduced concentrations were likely a result of degradation or retardation of Halon-1301 in the aquifer. However, we couldn’t provide full evidence for this due to the limited number of analysed groundwater samples (18 in total). In this study, we assess the potential of Halon-1301 as a groundwater age tracer for a larger dataset of groundwater samples under specific groundwater conditions, including highly anoxic young groundwater which can significantly degrade Halon-1301, to gain more information on the magnitude of occurrence and the causes of reduced Halon-1301 concentrations. In this study, we analysed 302 groundwater samples for Halon-1301, SF6, tritium and the CFCs CFC-11, CFC-12 and CFC-113. Comparison of age information inferred from the concentrations of these tracers allows assessment of the performance of Halon-1301 compared to other well established and widely used age tracers. The samples are taken from different groundwater environments in New Zealand and include anoxic and oxic waters with mean residence times ranging from


2020 ◽  
Author(s):  
Klaus Hinsby ◽  
Roland Purtschert ◽  
Stéphanie Musy ◽  
Jürgen Sültenfuss ◽  
David Wachs ◽  
...  

&lt;p&gt;Groundwater dating and travel time distributions are important tools and data for assessment of the vulnerability of water supply wells towards pollution from the surface. Here we present selected results from more than 30 water supply and monitoring wells from major Danish water companies. The wells were recently sampled and investigated using multiple environmental tracers including &lt;sup&gt;85&lt;/sup&gt;Kr, &lt;sup&gt;39&lt;/sup&gt;Ar, &lt;sup&gt;3&lt;/sup&gt;H/&lt;sup&gt;3&lt;/sup&gt;He, &lt;sup&gt;14&lt;/sup&gt;C, SF&lt;sub&gt;6&lt;/sub&gt;, CFCs and noble gases and different groundwater modeling techniques. The results demonstrate the value of groundwater dating and travel time estimations for the assessment of the history and fate of contaminants in the subsurface. This information is crucial for the assessment of the efficiency of measures to mitigate pollution of groundwater by harmful substances such as pesticides, nitrate and a large range of emerging contaminants. We demonstrate how groundwater ages and travel time distributions can be used to assess the vulnerability or susceptibility of water supply wells towards pollution, and how level specific sampling in long well screens can provide additional important information for assessment of the vulnerability of deep and shallow parts of a water supply well. Potential applications of the estimated travel time distributions include 1) improved management of well fields 2) development of pumping strategies and well screens minimizing the risk of pollution of drinking water wells, and 3) assessment of the adequacy of regulations established by authorities to protect valuable groundwater resources against pollution. &amp;#160;&amp;#160;&lt;/p&gt;


2012 ◽  
Vol 43 (5) ◽  
pp. 560-575 ◽  
Author(s):  
S. M. Dunn ◽  
W. G. Darling ◽  
C. Birkel ◽  
J. R. Bacon

The effectiveness of measures to mitigate nitrate concentrations in surface and groundwater depends not only on their suitability for reducing nitrate leaching, but also on characteristics of groundwater transport that may cause a lag in achieving recovery. The recovery of a catchment within a Nitrate Vulnerable Zone in the east of Scotland has been assessed using a combined monitoring and modelling approach. Understanding of the dominant hydrological processes was developed through a programme of monitoring of surface and groundwater bodies. Age dating of groundwater samples, using dissolved atmospheric trace gases (CFCs and SF6) underpinned the conceptualisation of groundwater transport and a lumped dispersion model was applied to the data to estimate mean solute transit times. High spatial variability in the groundwater dating made it difficult to estimate catchment means, but the range was estimated to lie between 15 and 60 years. A catchment hydrology and nitrate model was used to explore the effect of simple changes in land management on reducing nitrate concentrations, as well as associated time scales of recovery. The study has helped improve understanding of the role of groundwater in catchment recovery and given an indication of the scale of agricultural changes required to achieve different levels of pollution mitigation.


2020 ◽  
Vol 24 (1) ◽  
pp. 249-267 ◽  
Author(s):  
Cornelia Wilske ◽  
Axel Suckow ◽  
Ulf Mallast ◽  
Christiane Meier ◽  
Silke Merchel ◽  
...  

Abstract. Despite being the main drinking water resource for over 5 million people, the water balance of the Eastern Mountain Aquifer system on the western side of the Dead Sea is poorly understood. The regional aquifer consists of fractured and karstified limestone – aquifers of Cretaceous age, and it can be separated into a Cenomanian aquifer (upper aquifer) and Albian aquifer (lower aquifer). Both aquifers are exposed along the mountain ridge around Jerusalem, which is the main recharge area. From here, the recharged groundwater flows in a highly karstified aquifer system towards the east and discharges in springs in the lower Jordan Valley and Dead Sea region. We investigated the Eastern Mountain Aquifer system for groundwater flow, groundwater age and potential mixtures, and groundwater recharge. We combined 36Cl ∕ Cl, tritium, and the anthropogenic gases SF6, CFC-12 (chlorofluorocarbon) and CFC-11, while using CFC-113 as “dating” tracers to estimate the young water components inside the Eastern Mountain Aquifer system. By application of lumped parameter models, we verified young groundwater components from the last 10 to 30 years and an admixture of a groundwater component older than about 70 years. Concentrations of nitrate, simazine (pesticide), acesulfame K (ACE-K; artificial sweetener) and naproxen (NAP; drug) in the groundwater were further indications of infiltration during the last 30 years. The combination of multiple environmental tracers and lumped parameter modelling helped to understand the groundwater age distribution and to estimate recharge despite scarce data in this very complex hydrogeological setting. Our groundwater recharge rates support groundwater management of this politically difficult area and can be used to inform and calibrate ongoing groundwater flow models.


2018 ◽  
Vol 183 (4) ◽  
pp. 514-521
Author(s):  
P Vipin Kumar ◽  
S B Gudennavar ◽  
M S Chandrashekara ◽  
S G Bubbly ◽  
K S Hamsa

ABSTRACT Radon is a water-soluble radioactive noble gas produced from the alpha decay of 226Ra in uranium series. Its presence in drinking water and open air increases the risk of lung and intestinal cancers in human beings. In view of this, radon concentration in groundwater and its dose due to inhalation and ingestion to the population of Magadi taluk of Ramanagara district in Karnataka state, India was studied. The groundwater samples were analyzed for radon concentration using emanometry technique. The study showed that the radon concentration in this area varied from 27.4 ± 1.0 to 167.5 ± 3.9 Bq/L and the effective dose ranged from 104.2 ± 2.7 to 636.2 ± 11.0 μSv/a. The study also revealed that 95% of the 37 samples studied showed higher radon concentration compared to the UNSCEAR recommendation (40 Bq/L) and all the samples showed higher than the USEPA recommendation (11.1 Bq/L). Ten samples have concentration above the maximum permissible level prescribed by WHO (100 Bq/L). The groundwater samples are found to be slightly alkaline within the permissible limit of Indian Standards.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1983 ◽  
Author(s):  
Željka Brkić ◽  
Mladen Kuhta ◽  
Tamara Hunjak ◽  
Ozren Larva

Tracer methods are useful for investigating groundwater travel times and recharge rates and analysing impacts on groundwater quality. The most frequently used tracers are stable isotopes and tritium. Stable isotopes of oxygen (δ18O) and hydrogen (δ2H) are mainly used as indicators of the recharge condition. Tritium (3H) is used to estimate an approximate mean groundwater age. This paper presents the results of an analysis of stable isotope data and tritium activity in Croatian groundwater samples that were collected between 1997 and 2014 at approximately 100 sites. The composition of the stable isotopes of groundwater in Croatia originates from recent precipitation and is described using two regional groundwater lines. One of them is applied to groundwater accumulated in the aquifers in the Pannonian part of Croatia and the other is for groundwater accumulated in the Dinaric karst of Croatia. The isotope content shows that the studied groundwater is mainly modern water. A mix of sub-modern and modern water is mostly accumulated in semi-confined porous aquifers in northern Croatia, deep carbonate aquifers, and (sub)thermal springs.


Sign in / Sign up

Export Citation Format

Share Document