Experimental investigation of operational E-PVC drying conditions on morphological properties of particles in a pilot-scale spray dryer

Author(s):  
Salem Mehrzad ◽  
Farzad Jamaati ◽  
Masoud Dorfeshan
2006 ◽  
Vol 24 (2) ◽  
pp. 181-188 ◽  
Author(s):  
O.R. Roustapour ◽  
M. Hosseinalipour ◽  
B. Ghobadian

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6700
Author(s):  
Jolanta Gawałek

Experiments detailing the spray drying of fruit and vegetable juices are necessary at the experimental scale in order to determine the optimum drying conditions and to select the most appropriate carriers and solution formulations for drying on the industrial scale. In this study, the spray-drying process of beetroot juice concentrate on a maltodextrin carrier was analyzed at different dryer scales: mini-laboratory (ML), semi-technical (ST), small industrial (SI), and large industrial (LI). Selected physicochemical properties of the beetroot powders that were obtained (size and microstructure of the powder particles, loose and tapped bulk density, powder flowability, moisture, water activity, violet betalain, and polyphenol content) and their drying efficiencies were determined. Spray drying with the same process parameters but at a larger scale makes it possible to obtain beetroot powders with a larger particle size, better flowability, a color that is more shifted towards red and blue, and a higher retention of violet betalain pigments and polyphenols. As the size of the spray dryer increases, the efficiency of the process expressed in powder yield also increases. To obtain a drying efficiency >90% on an industrial scale, process conditions should be selected to obtain an efficiency of a min. of 50% at the laboratory scale or 80% at the semi-technical scale. Designing the industrial process for spray dryers with a centrifugal atomization system is definitely more effective at the semi-technical scale with the same atomization system than it is at laboratory scale with a two-fluid nozzle.


2010 ◽  
Vol 6 (1) ◽  
Author(s):  
Xuan-You Li ◽  
Ireneusz Zbicinski ◽  
Jing Wu

A scaling-up approach from drying of a thin layer wet material in a experimental tunnel to a pilot scale spray drying was developed through determining drying kinetics of quick evaporation process. Maltodextin was selected as solid material in solution to be dried. Critical moisture contents as a function of initial water evaporation rate (drying rate) shows that there is the same variation between the small scale test tunnel and the pilot scale spray dryer. Result of CFD modelling demonstrates that drying kinetics obtained from the small-scale tunnel could be properly applied to scale-up the spray drying process.


2012 ◽  
Vol 26 (2) ◽  
pp. 1063-1069 ◽  
Author(s):  
Xiaolei Guo ◽  
Wenxue Lu ◽  
Zhenghua Dai ◽  
Haifeng Liu ◽  
Xin Gong ◽  
...  

2003 ◽  
Vol 58 (20) ◽  
pp. 4695-4703 ◽  
Author(s):  
Yuanjing Zheng ◽  
Søren Kiil ◽  
Jan E. Johnsson

Sign in / Sign up

Export Citation Format

Share Document