Meteorological and topological factors influencing the power quality of wind turbine electricity generation from wind farms in complex terrain

1996 ◽  
Vol 17 (3) ◽  
pp. 145-150
Author(s):  
W. Schlez ◽  
D. G. Infield
2016 ◽  
Author(s):  
Amy Stidworthy ◽  
David Carruthers

Abstract. A new model, FLOWSTAR-Energy, has been developed for the practical calculation of wind farm energy production. It includes a semi-analytic model for airflow over complex surfaces (FLOWSTAR) and a wind turbine wake model that simulates wake-wake interaction by exploiting some similarities between the decay of a wind turbine wake and the dispersion of plume of passive gas emitted from an elevated source. Additional turbulence due to the wind shear at the wake edge is included and the assumption is made that wind turbines are only affected by wakes from upstream wind turbines. The model takes account of the structure of the atmospheric boundary layer, which means that the effect of atmospheric stability is included. A marine boundary layer scheme is also included to enable offshore as well as onshore sites to be modelled. FLOWSTAR-Energy has been used to model three different wind farms and the predicted energy output compared with measured data. Maps of wind speed and turbulence have also been calculated for two of the wind farms. The Tjaæreborg wind farm is an onshore site consisting of a single 2 MW wind turbine, the NoordZee offshore wind farm consists of 36 V90 VESTAS 3 MW turbines and the Nysted offshore wind farm consists of 72 Bonus 2.3 MW turbines. The NoordZee and Nysted measurement datasets include stability distribution data, which was included in the modelling. Of the two offshore wind farm datasets, the Noordzee dataset focuses on a single 5-degree wind direction sector and therefore only represents a limited number of measurements (1,284); whereas the Nysted dataset captures data for seven 5-degree wind direction sectors and represents a larger number of measurements (84,363). The best agreement between modelled and measured data was obtained with the Nysted dataset, with high correlation (0.98 or above) and low normalised mean square error (0.007 or below) for all three flow cases. The results from Tjæreborg show that the model replicates the Gaussian shape of the wake deficit two turbine diameters downstream of the turbine, but the lack of stability information in this dataset makes it difficult to draw conclusions about model performance. One of the key strengths of FLOWSTAR-Energy is its ability to model the effects of complex terrain on the airflow. However, although the airflow model has been previously compared extensively with flow data, it has so far not been used in detail to predict energy yields from wind farms in complex terrain. This will be the subject of a further validation study for FLOWSTAR-Energy.


2013 ◽  
Vol 136 (6) ◽  
Author(s):  
S. Jafari ◽  
N. Chokani ◽  
R. S. Abhari

The accurate modeling of the wind turbine wakes in complex terrain is required to accurately predict wake losses. In order to facilitate the routine use of computational fluid dynamics in the optimized micrositing of wind turbines within wind farms, an immersed wind turbine model is developed. This model is formulated to require grid resolutions that are comparable to that in microscale wind simulations. The model in connection with the k-ω turbulence model is embedded in a Reynolds-averaged Navier–Stokes solver. The predictions of the model are compared to available wind tunnel experiments and to measurements at the full-scale Sexbierum wind farm. The good agreement between the predictions and measurements demonstrates that the novel immersed turbine model is suited for the optimized micrositing of wind turbines in complex terrain.


2014 ◽  
Vol 687-691 ◽  
pp. 3162-3165
Author(s):  
Li Sheng Li ◽  
Shi Dong Zhang ◽  
He Jin Liu ◽  
Xing Quan Ji ◽  
Gui Bin Liu ◽  
...  

Wind generation can affect the power quality of power supply system in a certain extent at the same time of energy conservation and emission reduction. In order to study the power quality problem of distribution network with wind power embedded, several indices of power quality are defined in this paper, and the doubly fed wind turbine model is established in detail. The voltage deviation, system frequency, and harmonic distortion rate are analyzed based on the simulation data outputted by PSCAD.


Author(s):  
M. Zendehbad ◽  
N. Chokani ◽  
R. S. Abhari

An opto-mechanical system has been developed to measure the dynamic behaviour of multi-megawatt wind turbines. This portable system is easier and less expensive to use than previously used methods. Thus it is feasible to use the system to develop a large database of the modal damping characteristics of operational full-scale wind turbines for the development of the improved fatigue life prediction tools that are needed in the rapidly growing global wind industry. The opto-mechanical system and a 3D scanning pulsed Doppler LIDAR system are used to make simultaneous measurements of the dynamic response and wind field in three different utility-scale wind farms. The wind farms are located in different types of terrain, ranging from the flat terrain through to highly complex terrain. The measurements are made on five different multi-megawatt wind turbines (1.8MW Vestas V90; 2.0MW Vestas V80; 2.3MW Enercon E70; 3MW Vestas V90; and 3.6MW Siemens SWT). A single-degree-of-freedom dynamic model is used to determine the modal damping parameters from the measured spectra of the tower deflections. It is shown that the aeromechanical damping ratios range from 0.4% to 0.8%. Measurements in the operating and idling phases of a turbine are used to show that the aerodynamic damping, which arises from the interaction between the rotor and wind, is the dominant damping mechanism for an operating wind turbine, and accounts for two-thirds of the overall damping; the material damping accounts for one-third of the overall damping. The 3.6MW Siemens SWT wind turbine has the smallest overall damping, whereas the 3MW Vestas V90 has the largest damping as well as the largest dynamic deflections. However, an assessment of the Goodman diagram shows that in its location of flat terrain, the 3MW Vestas V90 wind turbine may likely meet its 20-year design life. Nevertheless, for other locations, such as in complex terrain, in-situ measurements should be made to verify the suitability of the wind turbine for wind farms in such locations. This work demonstrates the feasibility of using the opto-mechanical system to develop a large database of the modal damping characteristics of operational full-scale wind turbines.


Author(s):  
S. Jafari ◽  
N. Chokani ◽  
R. S. Abhari

The accurate modelling of the wind turbine wakes in complex terrain is required to accurately predict wake losses. In order to facilitate the routine use of computational fluid dynamics in the optimised micrositing of wind turbines within wind farms, an immersed wind turbine model is developed. This model is formulated to require grid resolutions that are comparable to that in microscale wind simulations. The model in connection with the k-ω turbulence model is embedded in a Reynolds-Averaged Navier Stokes solver. The predictions of the model are compared to available wind tunnel experiments and to measurements at the full-scale Sexbierum wind farm. The good agreement between the predictions and measurements demonstrates that the novel immersed turbine model is suited for the optimised micrositing of wind turbines in complex terrain.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 576
Author(s):  
Mohan Singh Panwar ◽  
Dr. Ajay Kumar Bansal

Input source for wind power generation in wind turbine is wind. Variation of wind is uncontrolled. Quality of power gener- ated in a windmill is very poor due to uncontrolled and fluctuated nature wind. As per International Electro-technical Commission standard, IEC-61400 norms the power quality and measurements of wind turbine is to be calculate. Electrical energy generated from wind power is based on minimum pollution of environment as comparative to conventional sources of generation. In a grid connected wind power system there are some power quality issues. In grid integrated wind power systems, quality of power is measured by active power, reactive power & variation of voltages measured under guidelines of national & international standards. In this proposed system, the energy generated by wind turbine is converted to DC & DC bus is charged. A microcontroller regulated PWM inverter convert this DC voltage to AC to feed it to grid. The pro- posed DC Bus is augmented by PV (photovoltaic) charged Battery Based PWM controlled STATCOM. 


Sign in / Sign up

Export Citation Format

Share Document