Parametric study of a closed cycle reheat gas turbine power plant based on the harmonic mean isentropic exponent

2009 ◽  
Vol 30 (2) ◽  
pp. 83-94
Author(s):  
H. Chandra ◽  
A. Tripathi ◽  
S. C. Kaushik
Author(s):  
L. D. Stoughton ◽  
T. V. Sheehan

A nuclear power plant is proposed which combines the advantages of a liquid metal fueled reactor with those inherent in a closed cycle gas turbine. The reactor fuel is a solution of uranium in molten bismuth which allows for unlimited burn-up with continuous fuel make-up and processing. The fuel can either be contained in a graphite core structure or circulated through an external heat exchanger. The cycle working fluid is an inert gas which is heated by the reactor fuel before entering the turbine. A 15 MW closed cycle gas turbine system is shown to illustrate the application of this reactor.


Author(s):  
F. S. Bhinder ◽  
Munzer S. Y. Ebaid ◽  
Moh’d Yazid F. Mustafa ◽  
Raj K. Calay ◽  
Mohammed H. Kailani

Large scale electrical power generation faces two serious problems: (i) energy conservation; and (ii) protection of the environment. High temperatures fuel cells have the potential to deal with both problems. The heat rejected by the fuel cell that would otherwise be wasted may be recovered to power a gas turbine in order to improve the energy conversion efficiency as well as power output of the combined fuel cell-gas turbine power plant. The added advantage of this approach would be to reduce thermal loading and the emission of greenhouse gases per MW electrical power generated. Serious research is being carried out worldwide to commercialise the fuel cell nevertheless there is still ample scope for studying the application of high temperature fuel cells in combination with the gas turbine for large scale electrical power generation. This paper presents the results of a parametric study of the fuel cell-gas turbine power plant to generate electricity. The paper should be of considerable interest to the designers and applications engineers working in power generation industry and other public utilities. The authors hope that the paper would lead to a stimulating discussion.


2015 ◽  
Vol 137 (05) ◽  
pp. 58-59
Author(s):  
Lee S. Langston

This article discusses various features of supercharged gas turbine and supercharged analysis. One 400 MW supercharged gas turbine power plant variant analysed by Wettstein yielded a predicted thermal efficiency of 60 percent, rivaling current combined cycle values. The supercharged gas turbine power plant proposed by Wettstein is a semi-closed (SC) cycle. The SC cycle is an amalgamation of closed and open cycles. It consists of a gas turbine having an internal combustor for energy input to the cycle. With a SC cycle, a designer now has some of the best features of both open and closed to move SC power plant operation in different directions. With internal combustion, the SC cycle is not constrained by the temperature limitations of the closed cycle. The supercharged gas turbine power plant looks very promising. In another ASME paper, Wettstein shows how gas turbine supercharging could benefit marine propulsion.


Sign in / Sign up

Export Citation Format

Share Document