A multi-temporal masking classification method for vineyard monitoring in central Spain

2001 ◽  
Vol 22 (16) ◽  
pp. 3167-3186 ◽  
Author(s):  
S. Lanjeri ◽  
J. Melia ◽  
D. Segarra
2019 ◽  
Vol 12 (4) ◽  
pp. 175-187
Author(s):  
Thanh Tien Nguyen

The objective of the study is to assess changes of fractional vegetation cover (FVC) in Hanoi megacity in period of 33 years from 1986 to 2016 based on a two endmember spectral mixture analysis (SMA) model using multi-spectral and multi-temporal Landsat-5 TM and -8 OLI images. Landsat TM/OLI images were first radiometrically corrected. FVC was then estimated by means of a combination of Normalized Difference Vegetation Index (NDVI) and classification method. The estimated FVC results were validated using the field survey data. The assessment of FVC changes was finally carried out using spatial analysis in GIS. A case study from Hanoi city shows that: (i) the proposed approach performed well in estimating the FVC retrieved from the Landsat-8 OLI data and had good consistency with in situ measurements with the statistically achieved root mean square error (RMSE) of 0.02 (R 2 =0.935); (ii) total FVC area of 321.6 km 2 (accounting for 9.61% of the total area) was slightly reduced in the center of the city, whereas, FVC increased markedly with an area of 1163.6 km 2 (accounting for 34.78% of the total area) in suburban and rural areas. The results from this study demonstrate the combination of NDVI and classification method using Landsat images are promising for assessing FVC change in megacities.


Proceedings ◽  
2019 ◽  
Vol 18 (1) ◽  
pp. 13
Author(s):  
Sona Salehiyan Qamsary ◽  
Hossein Arefi ◽  
Reza Shah-Hosseini

Urban areas are rapidly changing all over the world and, therefore, continuous mapping of the changes is essential for urban planners and decision makers. Urban changes can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The urban scene is characterized by very high complexity, containing objects formed from different types of man-made materials as well as natural objects. The aim of this study is to detect urban growth which can be further utilized for urban planning. Although high-resolution optical data can be used to determine classes more precisely, it is still difficult to distinguish classes, such as residential regions with different building type, due to spectral similarities. Synthetic aperture radar (SAR) data provide valuable information about the type of scattering backscatter from an object in the scene as well as its geometry and its dielectric properties. Therefore, the information obtained using SAR processing is complementary to that obtained using optical data. This proposed algorithm has been applied on a multi-sensor dataset consisting of optical QuickBird images (RGB) and full polarimetric L-band UAVSAR (Unmanned Aerial Vehicle Synthetic Aperture Radar) image data. After preprocessing the data, the coherency matrix (T), and Pauli decomposition are extracted from multi-temporal UAVSAR images. Next, the SVM (support vector machine) classification method is applied to the multi-temporal features in order to generate two classified maps. In the next step, a post-classification-based algorithm is used to generate the change map. Finally, the results of the change maps are fused by the majority voting algorithm to improve the detection of urban changes. In order to clarify the importance of using both optical and polarimetric images, the majority voting algorithm was also separately applied to change maps of optical and polarimetric images. In order to analyze the accuracy of the change maps, the ground truth change and no-change area that were gathered by visual interpretation of Google earth images were used. After correcting for the noise generated by the post-classification method, the final change map was obtained with an overall accuracy of 89.81% and kappa of 0.8049.


2019 ◽  
Vol 18 (2) ◽  
pp. 106-111
Author(s):  
Fong-Yi Lai ◽  
Szu-Chi Lu ◽  
Cheng-Chen Lin ◽  
Yu-Chin Lee

Abstract. The present study proposed that, unlike prior leader–member exchange (LMX) research which often implicitly assumed that each leader develops equal-quality relationships with their supervisors (leader’s LMX; LLX), every leader develops different relationships with their supervisors and, in turn, receive different amounts of resources. Moreover, these differentiated relationships with superiors will influence how leader–member relationship quality affects team members’ voice and creativity. We adopted a multi-temporal (three wave) and multi-source (leaders and employees) research design. Hypotheses were tested on a sample of 227 bank employees working in 52 departments. Results of the hierarchical linear modeling (HLM) analysis showed that LLX moderates the relationship between LMX and team members’ voice behavior and creative performance. Strengths, limitations, practical implications, and directions for future research are discussed.


Sign in / Sign up

Export Citation Format

Share Document