Effects of spatial resolution ratio in image fusion

2008 ◽  
Vol 29 (7) ◽  
pp. 2157-2167 ◽  
Author(s):  
Y. Ling ◽  
M. Ehlers ◽  
E. L. Usery ◽  
M. Madden
2020 ◽  
Vol 12 (6) ◽  
pp. 1009
Author(s):  
Xiaoxiao Feng ◽  
Luxiao He ◽  
Qimin Cheng ◽  
Xiaoyi Long ◽  
Yuxin Yuan

Hyperspectral (HS) images usually have high spectral resolution and low spatial resolution (LSR). However, multispectral (MS) images have high spatial resolution (HSR) and low spectral resolution. HS–MS image fusion technology can combine both advantages, which is beneficial for accurate feature classification. Nevertheless, heterogeneous sensors always have temporal differences between LSR-HS and HSR-MS images in the real cases, which means that the classical fusion methods cannot get effective results. For this problem, we present a fusion method via spectral unmixing and image mask. Considering the difference between the two images, we firstly extracted the endmembers and their corresponding positions from the invariant regions of LSR-HS images. Then we can get the endmembers of HSR-MS images based on the theory that HSR-MS images and LSR-HS images are the spectral and spatial degradation from HSR-HS images, respectively. The fusion image is obtained by two result matrices. Series experimental results on simulated and real datasets substantiated the effectiveness of our method both quantitatively and visually.


2018 ◽  
Vol 7 (2.19) ◽  
pp. 106
Author(s):  
Gandla Maharnisha ◽  
Gandla Roopesh Kumar ◽  
R Arunraj

This aims to fused image registration and image fusion used to spatial resolution images by principle component analysis method. Digital image processing requires either the full image or a part of image. It will be processed from the user’s point of view like the radius of object. Wavelet technique will improve the spatial resolution to produce spectral degradation in output image. To overcome the spectral degradation, PCA fusion method can be used. PCA uses curve which represent edges and extraction of the detailed information from the image.PAN and MS images are used by individual acquired low frequency approximate component and high frequency detail components in this PCA. To evaluate the image fusion accuracy, Peak Signal to Noise Ratio and Root Mean Square Error are used. The advantages of using digital image processing are preservation of original data accuracy, flexibility and repeatability. 


2018 ◽  
Vol 215 ◽  
pp. 01002
Author(s):  
Yuhendra ◽  
Minarni

Image fusion is a useful tool for integrating low spatial resolution multispectral (MS) images with a high spatial resolution panchromatic (PAN) image, thus producing a high resolution multispectral image for better understanding of the observed earth surface. A main proposed the research were the effectiveness of different image fusion methods while filtering methods added to speckle suppression in synthetic aperture radar (SAR) images. The quality assessment of the filtering fused image implemented by statistical parameter namely mean, standard deviation, bias, universal index quality image (UIQI) and root mean squared error (RMSE). In order to test the robustness of the image quality, either speckle noise (Gamma map filter) is intentionally added to the fused image. When comparing and testing result, Gram Scmidth (GS) methods have shown better results for good colour reproduction, as compared with high pass filtering (HPF). And the other hands, GS, and wavelet intensity hue saturation (W-IHS) have shown the preserving good colour with original image for Landsat TM data.


Author(s):  
Dr.Vani. K ◽  
Anto. A. Micheal

This paper is an attempt to combine high resolution panchromatic lunar image with low resolution multispectral lunar image to produce a composite image using wavelet approach. There are many sensors that provide us image data about the lunar surface. The spatial resolution and spectral resolution is unique for each sensor, thereby resulting in limitation in extraction of information about the lunar surface. The high resolution panchromatic lunar image has high spatial resolution but low spectral resolution; the low resolution multispectral image has low spatial resolution but high spectral resolution. Extracting features such as craters, crater morphology, rilles and regolith surfaces with a low spatial resolution in multispectral image may not yield satisfactory results. A sensor which has high spatial resolution can provide better information when fused with the high spectral resolution. These fused image results pertain to enhanced crater mapping and mineral mapping in lunar surface. Since fusion using wavelet preserve spectral content needed for mineral mapping, image fusion has been done using wavelet approach.


Tecnura ◽  
2020 ◽  
Vol 24 (66) ◽  
pp. 62-75
Author(s):  
Edwin Vargas ◽  
Kevin Arias ◽  
Fernando Rojas ◽  
Henry Arguello

Objective: Hyperspectral (HS) imaging systems are commonly used in a diverse range of applications that involve detection and classification tasks. However, the low spatial resolution of hyperspectral images may limit the performance of the involved tasks in such applications. In the last years, fusing the information of an HS image with high spatial resolution multispectral (MS) or panchromatic (PAN) images has been widely studied to enhance the spatial resolution. Image fusion has been formulated as an inverse problem whose solution is an HS image which assumed to be sparse in an analytic or learned dictionary. This work proposes a non-local centralized sparse representation model on a set of learned dictionaries in order to regularize the conventional fusion problem.Methodology: The dictionaries are learned from the estimated abundance data taking advantage of the depth correlation between abundance maps and the non-local self- similarity over the spatial domain. Then, conditionally on these dictionaries, the fusion problem is solved by an alternating iterative numerical algorithm.Results: Experimental results with real data show that the proposed method outperforms the state-of-the-art methods under different quantitative assessments.Conclusions: In this work, we propose a hyperspectral and multispectral image fusion method based on a non-local centralized sparse representation on abundance maps. This model allows us to include the non-local redundancy of abundance maps in the fusion problem using spectral unmixing and improve the performance of the sparsity-based fusion approaches.


2013 ◽  
Vol 760-762 ◽  
pp. 1524-1528 ◽  
Author(s):  
Ya Feng Zhang ◽  
Jian Guo Wen ◽  
Jun Ling Zhu ◽  
Jian Lin Yu

Data fusion technique can produce fused images with high spatial resolution and abundant spectral information. A new image fusion algorithm based on two-dimension PCA and Curvelet transform will be proposed according to image process models specialities in this paper. First of all, we performed 2DPCA on the MS image to get the 1st principle component (PC1); then we applied Curvelet transform in Pan Image and PC1; lastly decomposition coefficients obtained was processed according to certain rules to get fused coefficients, and afterwards, we performed inverse Curvelet transform on them to acquire fused sub-images. Then we performed inverse 2DPCA transform on the other components and the fused sub-images to get fused images. Experiments will be carried out via application of multispectral and panchromatic images, and it turns out that this new algorithm can improve spatial resolution greatly while maintaining spectral information.


Sign in / Sign up

Export Citation Format

Share Document