A study of spatial and temporal dynamics of total ozone over Southwest China with multi-source remote-sensing data

2012 ◽  
Vol 34 (1) ◽  
pp. 128-138 ◽  
Author(s):  
Zhongyong Xiao ◽  
Hong Jiang
Author(s):  
Marcelo Pedroso Curtarelli ◽  
Enner Herenio Alcântara ◽  
Carlos Alberto Sampaio De Araújo ◽  
José Luiz Stech ◽  
João Antônio Lorenzzetti

2020 ◽  
Author(s):  
Yanfei Ma ◽  
Ji Zhou ◽  
Shaomin Liu

<p>Accurate estimation of surface evapotranspiration (ET) with high quality and fine spatiotemporal resolution is one of the biggest obstacles for routine applications of remote sensing in eco-hydrological studies and water resource management at basin scale. Integrating multi-source remote sensing data is one of the main ideas for many scholars to obtain synthesized frequent high spatial resolution surface ET. This study was based on the theoretically robust surface energy balance system (SEBS) model, which the model mechanism needs further investigation, including the applicability and the influencing factors, such as local environment, heterogeneity of the landscape, and optimized parametric scheme, for improving estimation accuracy. In addition, due to technical and budget limitations, so far, no single sensor provides both high spatial resolution and high temporal resolution. Optical remote sensing data is missing due to frequent cloud contamination and other poor atmospheric conditions. The passive microwave (PW) remote sensing has a better ability in overcoming the influences of clouds and rainy. The accurate "all-weather" ET estimation method had been proposed through blending multi-source remote sensing data acquired by optical, thermal infrared (TIR) and PW remote sensors on board polar satellite platforms. The estimation had been carried out for daily ET of the River Source Region in Southwest China, and then the "All-weather" remotely sensed ET results showed that the daily ET estimates had a mean absolute percent error (MAPE) of 36% and a root mean square error (RMSE) of 0.88 mm/day relative to ground measurements from 12 eddy covariance (EC) sites in the study area. The validation results indicated good accuracy using multi-source remote sensing data in cloudy and mountainous regions.</p>


2021 ◽  
Vol 13 (2) ◽  
pp. 243
Author(s):  
Amal Chakhar ◽  
David Hernández-López ◽  
Rocío Ballesteros ◽  
Miguel A. Moreno

The availability of an unprecedented amount of open remote sensing data, such as Sentinel-1 and -2 data within the Copernicus program, has boosted the idea of combining the use of optical and radar data to improve the accuracy of agricultural applications such as crop classification. Sentinel-1’s Synthetic Aperture Radar (SAR) provides co- and cross-polarized backscatter, which offers the opportunity to monitor agricultural crops using radar at high spatial and temporal resolution. In this study, we assessed the potential of integrating Sentinel-1 information (VV and VH backscatter and their ratio VH/VV with Sentinel-2A data (NDVI) to perform crop classification and to define which are the most important input data that provide the most accurate classification results. Further, we examined the temporal dynamics of remote sensing data for cereal, horticultural, and industrial crops, perennials, deciduous trees, and legumes. To select the best SAR input feature, we tried two approaches, one based on classification with only SAR features and one based on integrating SAR with optical data. In total, nine scenarios were tested. Furthermore, we evaluated the performance of 22 nonparametric classifiers on which most of these algorithms had not been tested before with SAR data. The results revealed that the best performing scenario was the one integrating VH and VV with normalized difference vegetation index (NDVI) and cubic support vector machine (SVM) (the kernel function of the classifier is cubic) as the classifier with the highest accuracy among all those tested.


Sign in / Sign up

Export Citation Format

Share Document