scholarly journals A multiple-frame approach to crop yield estimation from satellite- remotely sensed data

2013 ◽  
Vol 34 (11) ◽  
pp. 3803-3819 ◽  
Author(s):  
Sumanta Kumar Das ◽  
Randhir Singh
Land ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1389
Author(s):  
Kamini Yadav ◽  
Hatim M. E. Geli

Agricultural production systems in New Mexico (NM) are under increased pressure due to climate change, drought, increased temperature, and variable precipitation, which can affect crop yields, feeds, and livestock grazing. Developing more sustainable production systems requires long-term measurements and assessment of climate change impacts on yields, especially over such a vulnerable region. Providing accurate yield predictions plays a key role in addressing a critical sustainability gap. The goal of this study is the development of effective crop yield predictions to allow for a better-informed cropland management and future production potential, and to develop climate-smart adaptation strategies for increased food security. The objectives were to (1) identify the most important climate variables that significantly influence and can be used to effectively predict yield, (2) evaluate the advantage of using remotely sensed data alone and in combination with climate variables for yield prediction, and (3) determine the significance of using short compared to long historical data records for yield prediction. This study focused on yield prediction for corn, sorghum, alfalfa, and wheat using climate and remotely sensed data for the 1920–2019 period. The results indicated that the use of normalized difference vegetation index (NDVI) alone is less accurate in predicting crop yields. The combination of climate and NDVI variables provided better predictions compared to the use of NDVI only to predict wheat, sorghum, and corn yields. However, the use of a climate only model performed better in predicting alfalfa yield. Yield predictions can be more accurate with the use of shorter data periods that are based on region-specific trends. The identification of the most important climate variables and accurate yield prediction pertaining to New Mexico’s agricultural systems can aid the state in developing climate change mitigation and adaptation strategies to enhance the sustainability of these systems.


2008 ◽  
Vol 29 (10) ◽  
pp. 3011-3032 ◽  
Author(s):  
Hongliang Fang ◽  
Shunlin Liang ◽  
Gerrit Hoogenboom ◽  
John Teasdale ◽  
Michel Cavigelli

2020 ◽  
Vol 13 (1) ◽  
pp. 180
Author(s):  
Olipa N. Lungu ◽  
Lydia M. Chabala ◽  
Chizumba Shepande

To sustain food security and crop condition monitoring, yield estimation must improve at local and global scales. The aim of this review was to give a background of satellite-based crop monitoring and crop yield estimation, including the use of crop models. Recently, most advances in remote sensing techniques, aimed at complimenting the traditional crop harvest surveys, have focused on high-production and information-rich areas. However, there is limited research in dynamic landscapes using these techniques at local scales in most Southern African countries. Models such as the Decision Support System Agro-Technology’s (DSSAT) CERES-model, and Agricultural Production Simulator (APSIM) have been used to simulate maize biophysical parameters and yield variability in a changing climate. Despite the successes, there is still need to consider yield prediction using simplified models that decision-makers can use to plan for food support and sales. The application of freely-available satellite data with focus on maize crop as a staple for Southern Africa, highlights some challenges such as heavy reliance on agro-meteorological estimations and regional estimations of crop yield. It also raises questions of predicting across large growing belts without consideration of diverse cropping patterns. Conversely, future opportunities in crop monitoring and yield estimation using remotely sensed-data still shed a light of hope. For instance, employing multi-model configurations or multi-model ensembles is one of the major missing gaps needing consideration by crop modeling research. Other simpler, but versatile opportunities are the use of crop –monitoring applications on smart phones by small holder farmers to provide phenological data to decision makers throughout a growing season.


Sign in / Sign up

Export Citation Format

Share Document