A new agricultural drought monitoring index combining MODIS NDWI and day–night land surface temperatures: a case study in China

2013 ◽  
Vol 34 (24) ◽  
pp. 8986-9001 ◽  
Author(s):  
Hao Sun ◽  
Xiang Zhao ◽  
Yunhao Chen ◽  
Adu Gong ◽  
Jing Yang
2015 ◽  
Vol 7 (4) ◽  
pp. 4689-4706 ◽  
Author(s):  
Sadroddin Alavipanah ◽  
Martin Wegmann ◽  
Salman Qureshi ◽  
Qihao Weng ◽  
Thomas Koellner

2020 ◽  
Vol 18 ◽  
pp. 100314 ◽  
Author(s):  
Abdulla - Al Kafy ◽  
Md. Shahinoor Rahman ◽  
Abdullah-Al- Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Muhaiminul Islam

2012 ◽  
Vol 16 (9) ◽  
pp. 3451-3460 ◽  
Author(s):  
W. T. Crow ◽  
S. V. Kumar ◽  
J. D. Bolten

Abstract. The lagged rank cross-correlation between model-derived root-zone soil moisture estimates and remotely sensed vegetation indices (VI) is examined between January 2000 and December 2010 to quantify the skill of various soil moisture models for agricultural drought monitoring. Examined modeling strategies range from a simple antecedent precipitation index to the application of modern land surface models (LSMs) based on complex water and energy balance formulations. A quasi-global evaluation of lagged VI/soil moisture cross-correlation suggests, when globally averaged across the entire annual cycle, soil moisture estimates obtained from complex LSMs provide little added skill (< 5% in relative terms) in anticipating variations in vegetation condition relative to a simplified water accounting procedure based solely on observed precipitation. However, larger amounts of added skill (5–15% in relative terms) can be identified when focusing exclusively on the extra-tropical growing season and/or utilizing soil moisture values acquired by averaging across a multi-model ensemble.


Sign in / Sign up

Export Citation Format

Share Document