Effect of red-edge and texture features for object-based paddy rice crop classification using RapidEye multi-spectral satellite image data

Author(s):  
Hyun-Ok Kim ◽  
Jong-Min Yeom
2020 ◽  
Vol 12 (2) ◽  
pp. 38
Author(s):  
Rani Yudarwati ◽  
Chiharu Hongo ◽  
Gunardi Sigit ◽  
Baba Barus ◽  
Budi Utoyo

This study presents a method for detecting rice crop damage due to bacterial leaf blight (BLB) infestation. Rice crop samples are first analyzed using a handheld spectroradiometer. Then, multi-temporal satellite image analysis is used to determine the most suitable vegetation indices for detecting BLB. The results showed that healthy plants have the highest first derivative value of spectral reflectance of the different categories of diseased plants. Significant difference can be found at approximately 690-770 nm (red edge region) which peak or maximum of the first derivative occurs in healthy crop whereas the highest percentage of BLB showed the lowest in that region. Moreover, visible bands such as blue, green, red, and red edge 1 band show variation of correlation in the early (vegetative) to generative stage then getting high especially in early of harvesting stage than the other bands; the NIR band exhibits a low correlation from the early stage of the growing season whereas the red and red edge bands reveal the highest correlations in the later stage of harvesting. Similarly, the satellite image analysis also reveals that disease incidence gradually increases with increasing age of the plant. The vegetation indices whose formulas consist of blue, green, red, and red edge bands (NGRDI, NPCI, and PSRI) exhibit the highest correlation with BLB infestation. NPCI and PSRI indices indicate that crop stress due to BLB is detected from ripening stage of NPCI then the senescence condition is then detected 12 days later. The coefficients of determination between these indices and BLB are 0.44, 0.63, and 0.67, respectively


Author(s):  
Stanislav Dugin ◽  
Oksana Sybirtseva ◽  
Stanislav Golubov ◽  
Yelizaveta Dorofey

The study of plant cover have been performed by the hyperspectral remote sensing method using ASD FieldSpec® 3FR and DJI STS-VIS measurements. The orthophotoplans are compiled for the test plots of interest at the spatial resolution of 2.5 cm. The substantial correlation for the results of terrestrial verification for the satellite image data in the range of Sentinel-2A bands are confirmed. 15 vegetation indices for the Sentinel-2А wavelength bands were drawn at the Pearson correlation coefficient r > 0.97, with a maximum value of the correlation error of 0.07.


Sign in / Sign up

Export Citation Format

Share Document