scholarly journals Spectral Discrimination and Reflectance Properties of Various Vine Varieties from Satellite, UAV and Proximate Sensors

Author(s):  
C. Karakizi ◽  
M. Oikonomou ◽  
K. Karantzalos

An assessment of the spectral discrimination between different vine varieties was undertaken using non-destructive remote sensing observations at the véraison period. During concurrent satellite, aerial and field campaigns, in-situ reflectance data were collected from a spectroradiometer, hyperspectral data were acquired from a UAV and multispectral data from a high-resolution satellite imaging sensor. Data were collected during a three years period (i.e, 2012, 2013 and 2014) over five wine-growing regions, covering more than 1000ha, in Greece. Data for more than twenty different vine varieties were processed and analysed. In particular, reflectance hyperspectral data from a spectroradiometer (GER 1500, Spectra Vista Corporation, 350-1050nm, 512 spectral bands) were calculated from the raw radiance values and then were correlated with the corresponding reflectance observations from the UAV and satellite data. Reflectance satellite data (WorldView-2, 400nm-1040nm, 8 spectral bands, DigitalGlobe), after the radiometric and atmospheric correction of the raw datasets, were classified towards the detection and the discrimination of the different vine varieties. The concurrent observations from in-situ hyperspectral, aerial hyperspectral and satellite multispectral data over the same vines were highly correlated. High correlations were, also, established for the same vine varieties (e.g., Syrah, Sauvignon Blanc) cultivated in different regions. The analysis of in-situ reflectance indicated that certain vine varieties, like Merlot, Sauvignon Blanc, Ksinomavro and Agiorgitiko possess specific spectral properties and detectable behaviour. These observations were, in most cases, in accordance with the classification results from the high resolution satellite data. In particular, Merlot and also Sauvignon Blanc were detected and discriminated with high accuracy rates. Surprisingly different clones from the same variety could be separated (e.g., clones of Syrah), while they were confused with other varieties (e.g., with Riesling).

2019 ◽  
Vol 11 (19) ◽  
pp. 2191 ◽  
Author(s):  
Encarni Medina-Lopez ◽  
Leonardo Ureña-Fuentes

The aim of this work is to obtain high-resolution values of sea surface salinity (SSS) and temperature (SST) in the global ocean by using raw satellite data (i.e., without any band data pre-processing or atmospheric correction). Sentinel-2 Level 1-C Top of Atmosphere (TOA) reflectance data is used to obtain accurate SSS and SST information. A deep neural network is built to link the band information with in situ data from different buoys, vessels, drifters, and other platforms around the world. The neural network used in this paper includes shortcuts, providing an improved performance compared with the equivalent feed-forward architecture. The in situ information used as input for the network has been obtained from the Copernicus Marine In situ Service. Sentinel-2 platform-centred band data has been processed using Google Earth Engine in areas of 100 m × 100 m. Accurate salinity values are estimated for the first time independently of temperature. Salinity results rely only on direct satellite observations, although it presented a clear dependency on temperature ranges. Results show the neural network has good interpolation and extrapolation capabilities. Test results present correlation coefficients of 82 % and 84 % for salinity and temperature, respectively. The most common error for both SST and SSS is 0.4 ∘ C and 0 . 4 PSU. The sensitivity analysis shows that outliers are present in areas where the number of observations is very low. The network is finally applied over a complete Sentinel-2 tile, presenting sensible patterns for river-sea interaction, as well as seasonal variations. The methodology presented here is relevant for detailed coastal and oceanographic applications, reducing the time for data pre-processing, and it is applicable to a wide range of satellites, as the information is directly obtained from TOA data.


2020 ◽  
Vol 12 (5) ◽  
pp. 882 ◽  
Author(s):  
Kai Ren ◽  
Weiwei Sun ◽  
Xiangchao Meng ◽  
Gang Yang ◽  
Qian Du

The China GaoFen-5 (GF-5) satellite sensor, which was launched in 2018, collects hyperspectral data with 330 spectral bands, a 30 m spatial resolution, and 60 km swath width. Its competitive advantages compared to other on-orbit or planned sensors are its number of bands, spectral resolution, and swath width. Unfortunately, its applications may be undermined by its relatively low spatial resolution. Therefore, the data fusion of GF-5 with high spatial resolution multispectral data is required to further enhance its spatial resolution while preserving its spectral fidelity. This paper conducted a comprehensive evaluation study of fusing GF-5 hyperspectral data with three typical multispectral data sources (i.e., GF-1, GF-2 and Sentinel-2A (S2A)), based on quantitative metrics, classification accuracy, and computational efficiency. Datasets on three study areas of China were utilized to design numerous experiments, and the performances of nine state-of-the-art fusion methods were compared. Experimental results show that LANARAS (this method was proposed by lanaras et al.), Adaptive Gram–Schmidt (GSA), and modulation transfer function (MTF)-generalized Laplacian pyramid (GLP) methods are more suitable for fusing GF-5 with GF-1 data, MTF-GLP and GSA methods are recommended for fusing GF-5 with GF-2 data, and GSA and smoothing filtered-based intensity modulation (SFIM) can be used to fuse GF-5 with S2A data.


2020 ◽  
Vol 7 ◽  
Author(s):  
Ainhoa Caballero ◽  
Sandrine Mulet ◽  
Nadia Ayoub ◽  
Ivan Manso-Narvarte ◽  
Xabier Davila ◽  
...  

Satellite altimeters provide continuous information of the sea level variability and mesoscale processes for the global ocean. For estimating the sea level above the geoid and monitoring the full ocean dynamics from altimeters measurements, a key reference surface is needed: The Mean Dynamic Topography (MDT). However, in coastal areas, where, in situ measurements are sparse and the typical scales of the motion are generally smaller than in the deep ocean, the global MDT solutions are less accurate than in the open ocean, even if significant improvement has been done in the past years. An opportunity to fill in this gap has arisen with the growing availability of long time-series of high-resolution HF radar surface velocity measurements in some areas, such as the south-eastern Bay of Biscay. The prerequisite for the computation of a coastal MDT, using the newly available data of surface velocities, was to obtain a robust methodology to remove the ageostrophic signal from the HF radar measurements, in coherence with the scales resolved by the altimetry. To that end, we first filtered out the tidal and inertial motions, and then, we developed and tested a method that removed the Ekman component and the remaining divergent part of the flow. A regional high-resolution hindcast simulation was used to assess the method. Then, the processed HF radar geostrophic velocities were used in synergy with additional in situ data, altimetry, and gravimetry to compute a new coastal MDT, which shows significant improvement compared with the global MDT. This study showcases the benefit of combining satellite data with continuous, high-frequency, and synoptic in situ velocity data from coastal radar measurements; taking advantage of the different scales resolved by each of the measuring systems. The integrated analysis of in situ observations, satellite data, and numerical simulations has provided a further step in the understanding of the local ocean processes, and the new MDT a basis for more reliable monitoring of the study area. Recommendations for the replicability of the methodology in other coastal areas are also provided. Finally, the methods developed in this study and the more accurate regional MDT could benefit present and future high-resolution altimetric missions.


Tellus B ◽  
2013 ◽  
Vol 65 (1) ◽  
pp. 19722 ◽  
Author(s):  
Torbern Tagesson ◽  
Mikhail Mastepanov ◽  
Meelis Mölder ◽  
Mikkel P. Tamstorf ◽  
Lars Eklundh ◽  
...  

Author(s):  
S. Wang ◽  
B. Yang ◽  
Y. Zhou ◽  
F. Wang ◽  
R. Zhang ◽  
...  

In order to monitor ice avalanches efficiently under disaster emergency conditions, a snow cover mapping method based on the satellite data of the Sentinels is proposed, in which the coherence and backscattering coefficient image of Synthetic Aperture Radar (SAR) data (Sentinel-1) is combined with the atmospheric correction result of multispectral data (Sentinel-2). The coherence image of the Sentinel-1 data could be segmented by a certain threshold to map snow cover, with the water bodies extracted from the backscattering coefficient image and removed from the coherence segment result. A snow confidence map from Sentinel-2 was used to map the snow cover, in which the confidence values of the snow cover were relatively high. The method can make full use of the acquired SAR image and multispectral image under emergency conditions, and the application potential of Sentinel data in the field of snow cover mapping is exploited. The monitoring frequency can be ensured because the areas obscured by thick clouds are remedied in the monitoring results. The Kappa coefficient of the monitoring results is 0.946, and the data processing time is less than 2 h, which meet the requirements of disaster emergency monitoring.


2020 ◽  
Vol 12 (24) ◽  
pp. 4077
Author(s):  
Michał Krupiński ◽  
Anna Wawrzaszek ◽  
Wojciech Drzewiecki ◽  
Małgorzata Jenerowicz ◽  
Sebastian Aleksandrowicz

Hyperspectral images provide complex information about the Earth’s surface due to their very high spectral resolution (hundreds of spectral bands per pixel). Effective processing of such a large amount of data requires dedicated analysis methods. Therefore, this research applies, for the first time, the degree of multifractality to the global description of all spectral bands of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. Subsets of four hyperspectral images, presenting four landscape types, are analysed. In particular, we verify whether multifractality can be detected in all spectral bands. Furthermore, we analyse variability in multifractality as a function of wavelength, for data before and after atmospheric correction. We try to identify absorption bands and discuss whether multifractal parameters provide additional value or can help in the problem of dimensionality reduction in hyperspectral data or landscape type classification.


Author(s):  
Felix N. Kogan

Operational polar-orbiting environmental satellites launched in the early 1960s were designed for daily weather monitoring around the world. In the early years, they were mostly applied for cloud monitoring and for advancing skills in satellite data applications. The new era was opened with the series of TIROS-N launched in 1978, which has continued until present. These satellites have such instruments as the advanced very high resolution radiometer (AVHRR) and the TIROS operational vertical sounder (TOVS), which included a microwave sounding unit (MSU), a stratospheric sounding unit (SSU), and high-resolution infrared radiation sounder/2 (HIRS/2). These instruments helped weather forecasters improve their skills. AVHRR instruments were also useful for observing and monitoring earth surface. Specific advances were achieved in understanding vegetation distribution. Since the late 1980s, experience gained in interpreting vegetation conditions from satellite images has helped develop new applications for detecting phenomenon such as drought and its impacts on agriculture. The objective of this chapter is to introduce AVHRR indices that have been useful for detecting most unusual droughts in the world during 1990–2000, a decade identified by the United Nations as the International Decade for Natural Disasters Reduction. Radiances measured by the AVHRR instrument onboard National Oceanic Atmospheric Administration (NOAA) polar-orbiting satellites can be used to monitor drought conditions because of their sensitivity to changes in leaf chlorophyll, moisture content, and thermal conditions (Gates, 1970; Myers, 1970). Over the last 20 years, these radiances were converted into indices that were used as proxies for estimating various vegetation conditions (Kogan, 1997, 2001, 2002). The indices became indispensable sources of information in the absence of in situ data, whose measurements and delivery are affected by telecommunication problems, difficult access to environmentally marginal areas, economic disturbances, and political or military conflicts. In addition, indices have advantage over in situ data in terms of better spatial and temporal coverage and faster data availability. The AVHRR-based indices used for monitoring vegetation can be divided into two groups: two-channel indices, and three-channel indices.


2020 ◽  
Vol 12 (11) ◽  
pp. 1701
Author(s):  
Carlos Román-Cascón ◽  
Marie Lothon ◽  
Fabienne Lohou ◽  
Nitu Ojha ◽  
Olivier Merlin ◽  
...  

The use of soil moisture (SM) measurements from satellites has grown in recent years, fostering the development of new products at high resolution. This opens the possibility of using them for certain applications that were normally carried out using in situ data. We investigated this hypothesis through two main analyses using two high-resolution satellite-based soil moisture (SBSM) products that combined microwave with thermal and optical data: (1) The Disaggregation based on Physical And Theoretical scale Change (DISPATCH) and, (2) The Soil Moisture Ocean Salinity-Barcelona Expert Center (SMOS-BEC Level 4). We used these products to analyse the SM differences among pixels with contrasting vegetation. This was done through the comparison of the SM measurements from satellites and the measurements simulated with a simple antecedent precipitation index (API) model, which did not account for the surface characteristics. Subsequently, the deviation of the SM from satellite with respect to the API model (bias) was analysed and compared for contrasting land use categories. We hypothesised that the differences in the biases of the varied categories could provide information regarding the water retention capacity associated with each type of vegetation. From the satellite measurements, we determined how the SM depended on the tree cover, i.e., the denser the tree cover, the higher the SM. However, in winter periods with light rain events, the tree canopy could dampen the moistening of the soil through interception and conducted higher SM in the open areas. This evolution of the SM differences that depended on the characteristics of each season was observed both from satellite and from in situ measurements taken beneath a tree and in grass on the savanna landscape. The agreement between both types of measurements highlighted the potential of the SBSM products to investigate the SM of each type of vegetation. We found that the results were clearer for DISPATCH, whose data was not smoothed spatially as it was in SMOS-BEC. We also tested whether the relationships between SM and evapotranspiration could be investigated using satellite data. The answer to this question was also positive but required removing the unrealistic high-frequency SM oscillations from the satellite data using a low pass filter. This improved the performance scores of the products and the agreement with the results from the in situ data. These results demonstrated the possibility of using SM data from satellites to substitute ground measurements for the study of land–atmosphere interactions, which encourages efforts to improve the quality and resolution of these measurements.


2006 ◽  
Vol 19 (3) ◽  
pp. 410-428 ◽  
Author(s):  
Nicholas R. Nalli ◽  
Richard W. Reynolds

Abstract This paper describes daytime sea surface temperature (SST) climate analyses derived from 16 years (1985–2000) of reprocessed Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres (PATMOS) multichannel radiometric data. Two satellite bias correction methods are employed: the first being an aerosol correction, the second being an in situ correction of satellite biases. The aerosol bias correction is derived from observed statistical relationships between the slant-path aerosol optical depth and AVHRR multichannel SST (MCSST) depressions for elevated levels of tropospheric and stratospheric aerosol. Weekly analyses of SST are produced on a 1° equal-angle grid using optimum interpolation (OI) methodology. Four separate OI analyses are derived based on 1) MCSST without satellite bias correction, 2) MCSST with aerosol satellite bias correction, 3) MCSST with in situ correction of satellite biases, and 4) MCSST with both aerosol and in situ corrections of satellite biases. These analyses are compared against the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager OI SST, along with the extended reconstruction SST in situ analysis product. The OI analysis 1 exhibits significant negative and positive biases. Analysis 2, derived exclusively from satellite data, reduces globally the negative bias associated with elevated atmospheric aerosol, and subsequently reveals pronounced variations in diurnal warming consistent with recently published works. Analyses 3 and 4, derived from in situ correction of satellite biases, alleviate biases (positive and negative) associated with both aerosol and diurnal warming, and also reduce the dispersion. The PATMOS OISST 1985–2000 daytime climate analyses presented here provide a high-resolution (1° weekly) empirical database for studying seasonal and interannual climate processes.


Sign in / Sign up

Export Citation Format

Share Document