Applicability of SAR-based wave retrieval for wind–wave interaction analysis in the fetch-limited Baltic

2017 ◽  
Vol 38 (3) ◽  
pp. 906-922 ◽  
Author(s):  
Sander Rikka ◽  
Rivo Uiboupin ◽  
Victor Alari
2018 ◽  
Vol 26 ◽  
pp. 162-173 ◽  
Author(s):  
Xuanting Hao ◽  
Tao Cao ◽  
Zixuan Yang ◽  
Tianyi Li ◽  
Lian Shen

2018 ◽  
Vol 48 (11) ◽  
pp. 2689-2701 ◽  
Author(s):  
Yohei Onuki ◽  
Toshiyuki Hibiya

AbstractRecent numerical and observational studies have reported that resonant wave–wave interaction may be a crucial process for the energy loss of internal tides and the associated vertical water mixing in the midlatitude deep ocean. Special attention has been directed to the remarkable latitudinal dependence of the resonant interaction intensity; semidiurnal internal tides promptly lose their energy to near-inertial motions through parametric subharmonic instability equatorward of the critical latitudes 29°N/S, where half the tidal frequency coincides with the local inertial frequency. This feature contradicts the classical theoretical prediction that resonant wave–wave interaction does not play a major role in the tidal energy loss in the open ocean. By reformulating the kinetic equation for long internal waves and developing its calculation method, we estimate the energy decay rates of the low-vertical-mode semidiurnal internal tides interacting with the “ubiquitous” oceanic internal wave field. The result shows rapid energy decay of the internal tides, typically within O(10) days for the lowest-mode component, near their critical latitudes. This decay time is severalfold shorter than those in the classical studies and, additionally, varies by a factor of 2 depending on the local depth and density structure. We suggest from this study that the numerical integration of the kinetic equation is a more effective approach than recognized to determine the decay parameter of wave energy, which is indispensable for the global ocean models.


2004 ◽  
Vol 193 (36-38) ◽  
pp. 3935-3956 ◽  
Author(s):  
J.G. Wang ◽  
T. Nogami ◽  
G.R. Dasari ◽  
P.Z. Lin

2017 ◽  
Vol 143 ◽  
pp. 02101
Author(s):  
Daniil Sergeev ◽  
Alexander Kandaurov ◽  
Yuliya Troitskaya ◽  
Guillemette Caulliez ◽  
Maximilian Bopp ◽  
...  

2011 ◽  
Vol 41 (8) ◽  
pp. 1421-1454 ◽  
Author(s):  
Yu. Troitskaya ◽  
D. Sergeev ◽  
O. Ermakova ◽  
G. Balandina

Abstract A turbulent airflow with a centerline velocity of 4 m s−1 above 2.5-Hz mechanically generated gravity waves of different amplitudes has been studied in experiments using the particle image velocimetry (PIV) technique. Direct measurements of the instantaneous flow velocity fields above a curvilinear interface demonstrating flow separation are presented. Because the airflow above the wavy water surface is turbulent and nonstationary, the individual vector fields are conditionally averaged sampled on the phase of the water elevation. The flow patterns of the phase-averaged fields are relatively smooth. Because the averaged flow does not show any strongly nonlinear effects, the quasi-linear approximation can be used. The parameters obtained by the flow averaging are compared with the theoretical results obtained within the theoretical quasi-linear model of a turbulent boundary layer above the wavy water surface. The wave-induced pressure disturbances in the airflow are calculated using the retrieved statistical ensemble of wind flow velocities. The energy flux from the wind to waves and the wind–wave interaction parameter are estimated using the obtained wave-induced pressure disturbances. The estimated values of the wind–wave interaction parameter are in a good agreement with the theory.


Sign in / Sign up

Export Citation Format

Share Document