Long-term spatial distribution of vegetation and sand movement following the commencement of landscape conservation activities to curb grassland encroachment at the Tottori Sand Dunes natural monument

2019 ◽  
Vol 41 (8) ◽  
pp. 3070-3094 ◽  
Author(s):  
Naru Takayama ◽  
Reiji Kimura ◽  
Jiaqi Liu ◽  
Masao Moriyama
2012 ◽  
Vol 36 (2) ◽  
pp. 313-327 ◽  
Author(s):  
Steven P. Campbell ◽  
Jack W. Witham ◽  
Malcolm L. Hunter

1991 ◽  
Vol 69 (7) ◽  
pp. 1593-1599 ◽  
Author(s):  
César S. B. Costa ◽  
Ulrich Seeliger ◽  
César V. Cordazzo

We studied the effect of nutrient status and sand movement on the population biology of Panicum racemosum Spreng. over a 5-year period (1982–1986) on mobile, semifixed and fixed coastal foredune habitats in southern Brazil. The soils were deficient in nitrate, phosphate, and potassium (<0.5, 0.2–1.2, and 3–5 mg/kg, respectively) in all habitats, and a gradient of decreasing availability existed from the mobile to the fixed dunes. Half-lives of leaves were shorter in the fixed dune as compared with the mobile dune. Similarly, half-lives of leaves were shorter in summer than in winter. Experiments using cuttings of P. racemosum tillers showed that as P. racemosum plants grew, so did the deposition of sand on mobile foredunes. The mechanical deposition of sand itself did not stimulate P. racemosum growth. The deposition of saline sand provided a substrate that supported vertical growth of P. racemosum rhizomes and tillers and was a source of adsorbed nutrients. Also, active sand deposition limited the invasion of frontal dunes by other species. Panicum racemosum populations changed from "invader" to "mature" to "regressive" age states over a 5-year period, apparently in response to the spatial patterns of sand deposition and salt spray input. Key words: Panicum, leaf demography, growth vigour, sand dunes, temporal changes.


2019 ◽  
Vol 187 ◽  
pp. 119-134 ◽  
Author(s):  
Haixiao Li ◽  
Alain Mollier ◽  
Noura Ziadi ◽  
Aimé Jean Messiga ◽  
Yichao Shi ◽  
...  

Soil Research ◽  
1996 ◽  
Vol 34 (1) ◽  
pp. 161 ◽  
Author(s):  
CH Thompson ◽  
EM Bridges ◽  
DA Jenkins

An exploratory examination has been made of three different kinds of hardpans found in humus podzols (Humods and Aquods) of the coastal lowlands of southern Queensland, by means of slaking tests, a reactive aluminium test, acid oxalate and pyrophosphate extractions and electron microscopy. Samples from three indurated layers exposed by erosion or sand-mining in large coastal dunes were included for comparison. The investigation confirmed that, a pan in a bleached A2 (albic E) horizon is most likely caused by particle packing and that a pan in a black B2h (spodic) horizon is cemented by an aluminium-organic complex. Yellow-brown pans underlying black organic pans (spodic horizons) were found to be cemented by both a proto-imogolite/allophane complex and an organic substance. An inorganic reactive Al complex differing from the proto-imogolite allophane recorded in the overlying giant podzols appeared to be main cement of three indurated layers in the nearby coastal sand dunes. Mechanical disturbance of the pans, e.g. ripping, is unlikely to improve drainage and effective soil depth in the long term, because the disturbed zones are expected to be re-sealed by packed particles or by the aluminium-organic complex cement.


2017 ◽  
Vol 2 (2) ◽  
pp. 16
Author(s):  
Jessica Zuanazzi Fioritti Corbo ◽  
Glécio Machado Siqueira ◽  
Sidney Rosa Vieira

2021 ◽  
Author(s):  
Okan Mert Katipoğlu

Abstract It is vital to accurately map the spatial distribution of precipitation, which is widely used in many fields such as hydrology, climatology, meteorology, ecology, and agriculture. In this study, it was aimed to reveal the spatial distribution of seasonal long-term average precipitation in the Euphrates Basin by using various interpolation methods. For this reason, Simple Kriging (SK), Ordinary Kriging (OK), Universal Kriging (UK), Ordinary CoKriging (OCK), Empirical Bayesian Kriging (EBK), Radial Basis Functions (Completely Regularized Spline (CRS), Thin Plate Spline (TPS), Multiquadratic, Inverse Multiquadratic (IM), Spline with Tensor (ST)), Local Polynomial Interpolation (LPI), Global Polynomial Interpolation (GPI), Inverse Distance Weighting (IDW) methods have been applied in the Geographical Information Systems (GIS) environment. Long-term seasonal precipitation averages between 1966 and 2017 are presented as input for the prediction of precipitation maps. The accuracy of the precipitation prediction maps created was based on root mean square error (RMSE) values obtained from the cross-validation tests. The method of precipitation by interpolation yielding the lowest RMSE was selected as the most appropriate method. As a result of the study, OCK in spring and winter precipitation, LPI in summer precipitation, and OK in autumn precipitation were determined as the most appropriate estimation method.


2020 ◽  
Vol 148 ◽  
Author(s):  
Cheng Ding ◽  
Chenyang Huang ◽  
Yuqing Zhou ◽  
Xiaofang Fu ◽  
Xiaoxiao Liu ◽  
...  

Abstract This study aims to ascertain the long-term epidemic trends of malaria and evaluates the probability of achieving the eradication goal by 2020 in China. Data on malaria incidence and deaths were extracted from the China Information System for Disease Control and Prevention. The epidemic trends by sex, age and spatial distribution and predictions of malaria were estimated by using Joinpoint and Poisson regressions. From 1950 to 2016, 227 668 374 malaria cases were reported in China, with an annualised average incidence of 337.02 (336.98–337.07, 95% confidence interval (CI)) per 100 000 population. The incidence decreased with an average annual per cent change (AAPC) of −11.4% (−16.6 to −6.0). There were 36 085 malaria deaths, with an annualised average mortality of 0.534 (0.529–0.540) per 1 000 000 population. The mortality decreased with an AAPC of −8.7% (−13.7 to −3.4). The predicted number of malaria cases and deaths for 2020 is 2 562 and 10, respectively, and zero for indigenous cases. The disease burden of malaria dramatically decreased in China. Though, the goal of malaria elimination is realistic by 2020 in China, routine clinical and entomological surveillance should be continually conducted, especially for the cross-border areas and imported malaria cases.


Sign in / Sign up

Export Citation Format

Share Document