10. Long-term spatial distribution of fisheries, 1600-1892

Dutch Herring ◽  
2009 ◽  
pp. 186-213
Keyword(s):  
2012 ◽  
Vol 36 (2) ◽  
pp. 313-327 ◽  
Author(s):  
Steven P. Campbell ◽  
Jack W. Witham ◽  
Malcolm L. Hunter

2019 ◽  
Vol 187 ◽  
pp. 119-134 ◽  
Author(s):  
Haixiao Li ◽  
Alain Mollier ◽  
Noura Ziadi ◽  
Aimé Jean Messiga ◽  
Yichao Shi ◽  
...  

2017 ◽  
Vol 2 (2) ◽  
pp. 16
Author(s):  
Jessica Zuanazzi Fioritti Corbo ◽  
Glécio Machado Siqueira ◽  
Sidney Rosa Vieira

2021 ◽  
Author(s):  
Okan Mert Katipoğlu

Abstract It is vital to accurately map the spatial distribution of precipitation, which is widely used in many fields such as hydrology, climatology, meteorology, ecology, and agriculture. In this study, it was aimed to reveal the spatial distribution of seasonal long-term average precipitation in the Euphrates Basin by using various interpolation methods. For this reason, Simple Kriging (SK), Ordinary Kriging (OK), Universal Kriging (UK), Ordinary CoKriging (OCK), Empirical Bayesian Kriging (EBK), Radial Basis Functions (Completely Regularized Spline (CRS), Thin Plate Spline (TPS), Multiquadratic, Inverse Multiquadratic (IM), Spline with Tensor (ST)), Local Polynomial Interpolation (LPI), Global Polynomial Interpolation (GPI), Inverse Distance Weighting (IDW) methods have been applied in the Geographical Information Systems (GIS) environment. Long-term seasonal precipitation averages between 1966 and 2017 are presented as input for the prediction of precipitation maps. The accuracy of the precipitation prediction maps created was based on root mean square error (RMSE) values obtained from the cross-validation tests. The method of precipitation by interpolation yielding the lowest RMSE was selected as the most appropriate method. As a result of the study, OCK in spring and winter precipitation, LPI in summer precipitation, and OK in autumn precipitation were determined as the most appropriate estimation method.


2020 ◽  
Vol 148 ◽  
Author(s):  
Cheng Ding ◽  
Chenyang Huang ◽  
Yuqing Zhou ◽  
Xiaofang Fu ◽  
Xiaoxiao Liu ◽  
...  

Abstract This study aims to ascertain the long-term epidemic trends of malaria and evaluates the probability of achieving the eradication goal by 2020 in China. Data on malaria incidence and deaths were extracted from the China Information System for Disease Control and Prevention. The epidemic trends by sex, age and spatial distribution and predictions of malaria were estimated by using Joinpoint and Poisson regressions. From 1950 to 2016, 227 668 374 malaria cases were reported in China, with an annualised average incidence of 337.02 (336.98–337.07, 95% confidence interval (CI)) per 100 000 population. The incidence decreased with an average annual per cent change (AAPC) of −11.4% (−16.6 to −6.0). There were 36 085 malaria deaths, with an annualised average mortality of 0.534 (0.529–0.540) per 1 000 000 population. The mortality decreased with an AAPC of −8.7% (−13.7 to −3.4). The predicted number of malaria cases and deaths for 2020 is 2 562 and 10, respectively, and zero for indigenous cases. The disease burden of malaria dramatically decreased in China. Though, the goal of malaria elimination is realistic by 2020 in China, routine clinical and entomological surveillance should be continually conducted, especially for the cross-border areas and imported malaria cases.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2556 ◽  
Author(s):  
John Rohit Katuri ◽  
Pavel Trifonov ◽  
Gilboa Arye

The availability of brackish groundwater in the Negev Desert, Israel has motivated the cultivation of various salinity tolerant crops, such as olives trees. The long term suitability of surface drip irrigation (DI) or subsurface drip irrigation (SDI) in arid regions is questionable, due to salinity concerns, in particular, when brackish irrigation water is employed. Nevertheless, DI and SDI have been adopted as the main irrigation methods in olive orchards, located in the Negev Desert. Reports on continued reduction in olive yields and, essentially, olive orchard uprooting are the motivation for this study. Specifically, the main objective is to quantify the spatial distribution of salinity and sodicity in the active root-zone of olive orchards, irrigated with brackish water (electrical conductivity; EC = 4.4 dS m−1) for two decades using DI and subsequently SDI. Sum 246 soil samples, representing 2 m2 area and depths of 60 cm, in line and perpendicular to the drip line, were analyzed for salinity and sodicity quantities. A relatively small leaching-zone was observed below the emitters depth (20 cm), with EC values similar to the irrigation water. However, high to extreme EC values were observed between nearby emitters, above and below the dripline. Specifically, in line with the dripline, EC values ranged from 10 to 40 dS m−1 and perpendicular to it, from 40 to 120 dS m−1. The spatial distribution of sodicity quantities, namely, the sodium adsorption ratio (SAR, (meq L−1)0.5) and exchangeable sodium percentage (ESP) resembled the one obtained for the EC. In line with the dripline, from 15 to 30 (meq L−1)0.5 and up to 27%, in perpendicular to the drip line from 30 to 60 (meq L−l)0.5 and up to 33%. This study demonstrates the importance of long terms sustainable irrigation regime in arid regions in particular under DI or SDI. Reclamation of these soils with gypsum, for example, is essential. Any alternative practices, such as replacing olive trees and the further introduction of even high salinity tolerant plants (e.g., jojoba) in this region will intensify the salt buildup without leaving any option for soil reclamation in the future.


2019 ◽  
Vol 26 (4) ◽  
pp. 655-670 ◽  
Author(s):  
Najeebullah Khan ◽  
Sahar Hadi Pour ◽  
Shamsuddin Shahid ◽  
Tarmizi Ismail ◽  
Kamal Ahmed ◽  
...  

2020 ◽  
Vol 46 (4) ◽  
pp. 813-823 ◽  
Author(s):  
Upendra Bhele ◽  
Burak Öğlü ◽  
Arvo Tuvikene ◽  
Priit Bernotas ◽  
Maidu Silm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document