Incorporating environmental variables, remote and proximal sensing data for digital soil mapping of USDA soil great groups

2020 ◽  
Vol 41 (19) ◽  
pp. 7624-7648
Author(s):  
Najmeh Asgari ◽  
Shamsollah Ayoubi ◽  
Azam Jafari ◽  
José A. M. Demattê
CATENA ◽  
2021 ◽  
Vol 207 ◽  
pp. 105702
Author(s):  
Sanaz Zare ◽  
Ali Abtahi ◽  
Seyed Rashid Fallah Shamsi ◽  
Philippe Lagacherie

2016 ◽  
Vol 8 (8) ◽  
pp. 614 ◽  
Author(s):  
Sérgio Silva ◽  
Giovana Poggere ◽  
Michele Menezes ◽  
Geila Carvalho ◽  
Luiz Guilherme ◽  
...  

2021 ◽  
Author(s):  
László Pásztor ◽  
Gábor Szatmári ◽  
Annamária Laborczi ◽  
János Mészáros ◽  
Tünde Takáts ◽  
...  

<p>Due to certain socio-economic processes and technical pressure, the number of potential data sources targeting the Earth’s surface increases rapidly as well as the data generated by them. Soil mapping heavily relied on these changes in the paradigm shift, which took place in the population and interpretation of spatial soil information in the last decade. In digital soil mapping practice, auxiliary, environmental co-variables, which are related to soil forming factors and processes, have been taken into account in spatially exhaustive form. However, the potential hidden in spatially non-exhaustive (most frequently point-like), ancillary information – originating from observations also targeting the soil mantle – is far from being exploited. In their thematic features, accuracy and reliability they are inferior to primary field and/or laboratory measurements collected directly, but they are generated in more facile, cheaper way, in greater volume, with denser temporal and spatial coverage and characteristically they are available in significantly easier form. Data sequences of various installed field sensors, data collections by proximal sensing techniques, information supply by farmers and land managers as well as citizen science are considered as possible information sources. Essentially, the (soft) data supplied by them don’t provide spatially exhaustive coverage, neither direct pedological reference, nevertheless they are hypothesized to be utilized as auxiliary information within DSM framework. In a recently started project we started to investigate, (i) in which way and with what efficiency these ancillary information originating from different secondary sources can be applied, furthermore (ii) in what manner their application influences (hopefully improves) the results, accuracy and reliability of goal-specific spatial predictions. The elaborated digital mapping procedures, which are based on (i) large amount of data with differing quality and (ii) integrated geostatistical and data mining methods can be absorbed in various earth and environmental science applications.</p><p> </p><p><strong>Acknowledgment:</strong> Our research was supported by the Hungarian National Research, Development and Innovation Office (NKFIH; K-131820) and Gábor Szatmári by the Premium Postdoctoral Scholarship of the Hungarian Academy of Sciences (PREMIUM-2019-390).</p>


2019 ◽  
Vol 29 (1) ◽  
Author(s):  
Jeremy P. Mondejar ◽  
Alejandro F. Tongco

AbstractDigital soil mapping for soil texture is mostly an understanding of how soil texture fractions vary in space as influenced by environmental variables mainly derived from the digital elevation model (DEM). In this study, topsoil texture models were generated and evaluated by multiple linear regression (MLR), ordinary kriging (OK), simple kriging (SK) and universal kriging (UK) using free and open-source R, System for Automated Geoscientific Analyses, and QGIS software. Comparing these models is the main objective of the study. The study site covers an area of 124 km2 of the Municipality of Barili, Cebu. A total of 177 soil samples were gathered and analyzed from irregular sample points. DEM derivatives and remote sensing data (Landsat 8) were used as environmental variables. Exploratory analyses revealed no outlier in the data. Skewness and kurtosis values of the untransformed data vary greatly between –3.85 to 7.20 and 1.8 to 70.7, respectively; an indication that variables are highly skewed with heavy tails. Thus, Tukey’s ladder of powers transformation was applied that resulted to normal or nearly normal distribution having skewness values close to zero and kurtosis values have lighter tails. All data analysis from MLR modeling, variography, kriging, and cross-validations of models were implemented using the transformed data. Forward selection, backward elimination, and stepwise selection methods were adapted for predictors selection in MLR. The MLR, OK, SK, and UK were applied and cross validated for topsoil texture prediction. Likewise, exponential, Gaussian, and spherical models were fitted for the experimental variograms. Backward elimination method for clay, sand, and silt have the lowest MAE and highest R2 in MLR. The UK fitted with exponential variogram model has the highest R2 of 0.878, 0.821, and 0.893 for clay, sand, and silt, respectively. These models can be adapted as a decision support for agricultural land use planning and crop suitability development in the area.


CATENA ◽  
2020 ◽  
Vol 184 ◽  
pp. 104259 ◽  
Author(s):  
Haoxuan Yang ◽  
Xiaokang Zhang ◽  
Mengyuan Xu ◽  
Shuai Shao ◽  
Xiang Wang ◽  
...  

2021 ◽  
Author(s):  
Fuat Kaya ◽  
Levent Başayiğit

<p>Soil maps are an important source of data in monitoring natural resources and land use planning. However, in many countries, soil maps were prepared at a reconnaissance level. This detail is not enough for land use planning. Soil texture is one of the most important soil physical properties that affect water holding capacity, nutrient availability, and crop growth. The spatial distribution of soil texture at a high resolution is essential for crop planning and management. Digital soil mapping is the method of spatial data generation with the advantages of current technologies. It supplies fast, accurate, and reproducible results.</p><p>In this study, a soil texture map with 30 m spatial resolution was produced for an alluvial plain covering an area of approximately 10,000 ha. In the study, 11 Topographic Environmental Variables obtained from NASA's ASTER Global Digital Elevation model were used. Another input parameters were clay, silt, and sand values determined for 91 soil samples obtained through field studies.</p><p>R Core Environment (3.6.1) and related packages were used for environmental variable extraction, modeling, and spatial mapping. For model building, 70 % of data was used and the rest of the data was used for validation. Random Forest Algorithm offers interpretability for pedological information extraction by determining the importance of environmental variables in digital soil mapping. Random Forest Algorithm is preferred because of working in small data sets, harmoniously. The most important topographic environmental variables for clay were elevation, aspect, and slope. For sand, it was the elevation, aspect, and topographic wetness index. And for silt, it was the elevation, slope length, and planform curvature. Root Mean Square Error (RMSE), was used as a model performance measure. In the train data, R<sup>2</sup> values for clay, sand and silt were 0.84, 0.75, 0.85 and RMSE values were 5.23 %, 3.03 %, 5.48 % respectively. In the test data, R<sup>2</sup> and RMSE values were 0.26, 0.11, 0.10 and 11.8 %, 6.74 %, 13.71 % respectively.</p><p>There are high differences between RMSE values of training and test data sets. This event may be caused by the small sample size and to be discussed subject in different studies. High resolution (30 m) data of clay, silt, and sand contents can be useful for hydrological studies and for the preparation of land use plans. Digital soil maps can guide policymakers in creating site-specific land management plans. As well as it can be used for monitoring soil fertility and providing ecosystem services. This study revealed important results regarding the use of digital soil mapping in practice with its analytical and statistical accuracy.</p>


2014 ◽  
Vol 63 (1) ◽  
pp. 79-88 ◽  
Author(s):  
László Pásztor ◽  
E. Dobos ◽  
G. Szatmári ◽  
A. Laborczi ◽  
K. Takács ◽  
...  

The main objective of the DOSoReMI.hu (Digital, Optimized, Soil Related Maps and Information in Hungary) project is to significantly extend the potential, how demands on spatial soil related information could be satisfied in Hungary. Although a great amount of soil information is available due to former mappings and surveys, there are more and more frequently emerging discrepancies between the available and the expected data. The gaps are planned to be filled with optimized digital soil mapping (DSM) products heavily based on legacy soil data, which still represent a valuable treasure of soil information at the present time. The paper presents three approaches for the application of Hungarian legacy soil data in object oriented digital soil mapping.


Sign in / Sign up

Export Citation Format

Share Document