Ladder operators for Morse oscillator and a perturbed vibrational problem

2019 ◽  
Vol 38 (1) ◽  
pp. 63-113 ◽  
Author(s):  
Sergey V. Krasnoshchekov ◽  
Xuanhao Chang
2020 ◽  
Vol 384 (19) ◽  
pp. 126493
Author(s):  
Xuanhao Chang ◽  
Sergey V. Krasnoshchekov ◽  
Vladimir I. Pupyshev ◽  
Dmitry V. Millionshchikov

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 853
Author(s):  
Enrico Celeghini ◽  
Manuel Gadella ◽  
Mariano del Olmo

Using normalized Hermite functions, we construct bases in the space of square integrable functions on the unit circle (L2(C)) and in l2(Z), which are related to each other by means of the Fourier transform and the discrete Fourier transform. These relations are unitary. The construction of orthonormal bases requires the use of the Gramm–Schmidt method. On both spaces, we have provided ladder operators with the same properties as the ladder operators for the one-dimensional quantum oscillator. These operators are linear combinations of some multiplication- and differentiation-like operators that, when applied to periodic functions, preserve periodicity. Finally, we have constructed riggings for both L2(C) and l2(Z), so that all the mentioned operators are continuous.


1985 ◽  
Vol 112 (1) ◽  
pp. 183-202 ◽  
Author(s):  
V. Špirko ◽  
Per Jensen ◽  
P.R. Bunker ◽  
A. Čejchan
Keyword(s):  

2021 ◽  
pp. 2150121
Author(s):  
Masoud Seidi

The eigenvalues and eigenfunctions of Dirac–Pauli equation have been obtained for a neutron with anomalous magnetic moment (AMM) in the presence of a strong magnetic field with cylindrical symmetry. In our calculations, the Nikiforov and Uvarov (NU) method has been used. Using the eigenfunctions and construction of the ladder operators, we show that these generators satisfy su(2) Lie algebra and computed the second-order Casimir operator of the lie algebra.


2018 ◽  
Vol 33 (04) ◽  
pp. 1830005 ◽  
Author(s):  
C. Furey

We bring to light an electroweak model which has been reappearing in the literature under various guises.[Formula: see text] In this model, weak isospin is shown to act automatically on states of only a single chirality (left). This is achieved by building the model exclusively from the raising and lowering operators of the Clifford algebra [Formula: see text]. That is, states constructed from these ladder operators mimic the behaviour of left- and right-handed electrons and neutrinos under unitary ladder operator symmetry. This ladder operator symmetry is found to be generated uniquely by [Formula: see text] and [Formula: see text]. Crucially, the model demonstrates how parity can be maximally violated, without the usual step of introducing extra gauge and extra Higgs bosons, or ad hoc projectors.


Sign in / Sign up

Export Citation Format

Share Document