Transmitted Optical Power through a Tapered Single-Mode Fiber under Dynamic Bending Effects

2003 ◽  
Vol 22 (3) ◽  
pp. 173-187 ◽  
Author(s):  
IGNACIO MATÍAS
Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 128
Author(s):  
Jixiang Dai ◽  
Yi Li ◽  
Hongbo Ruan ◽  
Zhuang Ye ◽  
Nianyao Chai ◽  
...  

In this paper, WO3-Pd2Pt-Pt nanocomposite films were deposited on a single mode fiber as the hydrogen sensing material, which changes its reflectivity under different hydrogen concentration. The reflectivity variation was probed and converted to an electric signal by a pair of balanced InGaAs photoelectric detectors. In addition, the performance of the WO3-Pd2Pt-Pt composite film was investigated under different optical powers, and the irrigating power was optimized at 5 mW. With the irrigation of this optical power, the hydrogen sensitive film exhibits quick response toward 100 ppm hydrogen in air atmosphere at a room temperature of 25 °C. The experimental results demonstrate a high resolution at 5 parts per million (ppm) within a wide range from 100 to 5000 ppm in air. This simple and compact sensing system can detect hydrogen concentrations far below the explosion limit and provide early alert for hydrogen leakage, showing great potential in hydrogen-related applications.


2021 ◽  
Vol 11 (9) ◽  
pp. 4284
Author(s):  
Oskars Ozolins ◽  
Xiaodan Pang ◽  
Aleksejs Udalcovs ◽  
Richard Schatz ◽  
Sandis Spolitis ◽  
...  

We experimentally evaluate the high-speed on–off keying (OOK) and four-level pulse amplitude modulation (PAM4) transmitter’s performance in C-band for short-reach optical interconnects. We demonstrate up to 100 Gbaud OOK and PAM4 transmission over a 400 m standard single-mode fiber with a monolithically integrated externally modulated laser (EML) having 100 GHz 3 dB bandwidth with 2 dB ripple. We evaluate its capabilities to enable 800 GbE client-side links based on eight, and even four, optical lanes for optical interconnect applications. We study the equalizer’s complexity when increasing the baud rate of PAM4 signals. Furthermore, we extend our work with numerical simulations showing the required received optical power (ROP) for a certain bit error rate (BER) for the different combinations of the effective number of bits (ENOB) and extinction ratio (ER) at the transmitter. We also show a possibility to achieve around 1 km dispersion uncompensated transmission with a simple decision feedback equalizer (DFE) for a 100 Gbaud OOK, PAM4, and eight-level PAM (PAM8) link having the received power penalty of around 1 dB.


1993 ◽  
Vol 29 (6) ◽  
pp. 1932-1935 ◽  
Author(s):  
M. Ohkubo ◽  
S. Namiki ◽  
T. Ijichi ◽  
A. Iketani ◽  
T. Kikuta

Sign in / Sign up

Export Citation Format

Share Document