Ocean Model Simulation of Southern Indian Ocean Surface Currents

2007 ◽  
Vol 30 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Anshu Prakash Mishra ◽  
S. Rai ◽  
A. C. Pandey
2020 ◽  
Author(s):  
Felix L. Müller ◽  
Denise Dettmering ◽  
Claudia Wekerle ◽  
Christian Schwatke ◽  
Marcello Passaro ◽  
...  

<p>Satellite altimetry is an important part of the Global Geodetic Observing System providing precise information on sea level on different spatial and temporal scales. Moreover, satellite altimetry-derived dynamic ocean topography heights enable the computation of ocean surface currents by applying the well-known geostrophic equations. However, in polar regions, altimetry observations are affected by seasonally changing sea-ice cover leading to a fragmentary data sampling.</p><p>In order to overcome this problem, an ocean model is used to fill in data gaps. The aim is to obtain a homogeneous ocean topography representation that enables consistent investigations of ocean surface current changes. For that purpose, the global Finite Element Sea-ice Ocean Model (FESOM) is used. It is based on an unstructured grid and provides daily water elevations with high spatial resolution.</p><p><span>The combination is done based on a Principal Component Analysis (PCA) after reducing both quantities by their constant and seasonal signals. In the main step, the </span><span>most dominant spatial patterns of the modeled water heights </span><span>as provided by the PCA are linked with the </span><span>temporal variability of </span><span>the estimated </span><span>dynamic ocean topography elevations</span><span> from altimetry. At the end, the seasonal signal as well as the absolute reference from altimetry is added back to the data set.</span></p><p><span>T</span><span>his </span><span>contribution</span><span> describes the combination process </span><span>as well as the generated final product: </span><span> a daily, more than 17 years covering dataset of geostrophic ocean currents. The combination is done for the </span><span>marine </span><span>region</span><span>s</span><span> Greenland Sea, Barents Sea and the Fram Strait and includes sea surface height observations of the ESA altimeter satellites ERS-2 and Envisat. In order to evaluate the </span><span>combination </span><span>results, independent </span><span>surface </span><span>drifter </span><span>observations</span><span>, </span><span>corrected for</span> <span>a-geostrophic velocity </span><span>components, are used.</span></p>


2020 ◽  
Author(s):  
Andreas Lehmann ◽  
Steffen Suchandt

<p>Dynamical processes at the ocean surface are of high interest because they control the exchange processes between ocean and atmosphere. Furthermore, ocean surface drift determines the dispersion of heat, salt and material such as harmful substances or plastic litter. Still the measurement of ocean surface currents is a challenge because of wave and wave-breaking processes. Here we demonstrate the usefulness of TerraSAR-X/TanDEM-X data to determine ocean surface currents, wave and wind fields. Up to now there are no spatially resolved ocean surface currents measurements available, so that for the validation of surface currents a combined SAR and hydrodynamic modeling methodology is applied. Ocean surface currents are derived from SAR Along-track Interferometry, and the hydrodynamic model is a coupled wave sea ice-ocean model of the Baltic Sea. The model is driven by ERA-Interim atmospheric reanalysis data. Hydrodynamic model data are also used to support the geophysical interpretation of the multiparametrical information of the ocean surface provided by SAR.</p>


2013 ◽  
Vol 4 (4) ◽  
pp. 335-343 ◽  
Author(s):  
Rajesh Sikhakolli ◽  
Rashmi Sharma ◽  
Raj Kumar ◽  
B. S. Gohil ◽  
Abhijit Sarkar ◽  
...  

2021 ◽  
Author(s):  
Stephen Kelly ◽  
Ekaterina Popova ◽  
Zoe Jacobs

<p>Marine circulation connectivity describes the pathways and timescales over which spatially separated parts of the ocean are connected by oceanic currents. In the Western Indian Ocean (WIO), these pathways and associated timescales are characterised by pronounced seasonal and interannual variability, including monsoon-driven reversal of surface currents in the northern part of the basin.</p><p>Understanding the connectivity timescales in the WIO – and their variability – is important for a multitude of reasons. Ecological connectivity between coral reefs is necessary to maintain their biodiversity, understanding downstream connectivity from marine resource exploitation sites is important to understand which areas are likely to be affected, and circulation connectivity is a key concern when designing marine conservation measures. For example, establishing an effective network of marine protected areas (MPAs) requires that they are connected on ecologically relevant timescales (e.g. the duration of species’ pelagic larval stages), but gaps in the existing MPA network mean that decisions need to be undertaken about which areas to prioritise for future protection. Therefore, knowledge of the advective pathways connecting the WIO over these timescales is essential for effective management of the region.</p><p>Here, a Lagrangian particle tracking method is used in conjunction with a 1/12° resolution ocean model to elucidate the advective pathways mediated by major surface currents in the WIO. Model experiments are performed with virtual particles released into several major WIO currents and tracked for 100 days, and the resulting trajectories are analysed. Significant variability was found, with advective pathways and timescales sensitive to both season and year of release. The main differences are associated with the different monsoon regimes driving changes in connectivity timescales, and reversing direction of advective pathways in the north of the WIO. In addition to this seasonal variability, interannual changes are explored. Case studies of anomalous connectivity pathways / timescales are presented and discussed in the context of extremes in forcing and larger scale variability, including the Indian Ocean Dipole.  </p>


Sign in / Sign up

Export Citation Format

Share Document