scholarly journals ATM cash replenishment under varying population coverage requirements

Author(s):  
Andrea Chiussi ◽  
Christos Orlis ◽  
Roberto Roberti ◽  
Wout Dullaert
Author(s):  
Caroline J. Jagtenberg ◽  
Maaike A. J. Vollebergh ◽  
Oddvar Uleberg ◽  
Jo Røislien

Abstract Background A primary task of the Norwegian helicopter emergency medical services (HEMS) is to provide advanced medical care to the critical ill and injured outside of hospitals. Where HEMS bases are located, directly influences who in the population can be reached within a given response time threshold and who cannot. When studying the locations of bases, the focus is often on efficiency, that is, maximizing the total number of people that can be reached within a given set time. This approach is known to benefit people living in densely populated areas, such as cities, over people living in remote areas. The most efficient solution is thus typically not necessarily a fair one. This study aims to incorporate fairness in finding optimal air ambulance base locations. Methods We solve multiple advanced mathematical optimization models to determine optimal helicopter base locations, with different optimization criteria related to the level of aversion to inequality, including the utilitarian, Bernoulli-Nash and iso-elastic social welfare functions. This is the first study to use the latter social welfare function for HEMS. Results Focusing on efficiency, a utilitarian objective function focuses on covering the larger cities in Norway, leaving parts of Norway largely uncovered. Including fairness by rather using an iso-elastic social welfare function in the optimization avoids leaving whole areas uncovered and in particular increases service levels in the north of Norway. Conclusions Including fairness in determining optimal HEMS base locations has great impact on population coverage, in particular when the number of base locations is not enough to give full coverage of the country. As results differ depending on the mathematical objective, the work shows the importance of not only looking for optimal solutions, but also raising the essential question of ‘optimal with respect to what’.


2021 ◽  
Vol 37 (3) ◽  
pp. 655-671
Author(s):  
Paolo Righi ◽  
Piero Demetrio Falorsi ◽  
Stefano Daddi ◽  
Epifania Fiorello ◽  
Pierpaolo Massoli ◽  
...  

Abstract For the first time in 2018 the Italian Institute of Statistics (Istat) implemented the annual Permanent Population Census which relies on the Population Base Register (PBR) and the Population Coverage Survey (PCS). This article provides a general overview of the PCS sampling design, which makes use of the PBR to correct population counts with the extended dual system estimator (Nirel and Glickman 2009). The sample allocation, proven optimal under a set of precision constraints, is based on preliminary estimates of individual probabilities of over-coverage and under-coverage. It defines the expected sample size in terms of individuals, and it oversamples the sub-populations subject to the risk of under/over coverage. Finally, the article introduces a sample selection method, which to the greatest extent possible satisfies the planned allocation of persons in terms of socio-demographic characteristics. Under acceptable assumptions, the article also shows that the sampling strategy enhances the precision of the estimates.


2003 ◽  
Vol 27 (5) ◽  
pp. 507-512 ◽  
Author(s):  
Kerri Beckmann ◽  
Penny Iosifidis ◽  
Lesley Shorne ◽  
Sue Gilchrist ◽  
David Roder

Author(s):  
Yuichi Kawamoto ◽  
Takayuki Nakazawa ◽  
Hiroki Nishiyama ◽  
Nei Kato ◽  
Yoshitaka Shimizu ◽  
...  

2018 ◽  
Vol 61 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Carlos Sangil ◽  
Laura Martín-García ◽  
Julio Afonso-Carrillo ◽  
Jacinto Barquín ◽  
Marta Sansón

AbstractExtensive offshore meadows ofHalimeda incrassataare documented for the first time in sandy bottoms of La Palma, Canary Islands.Halimeda incrassataforms dense sublittoral assemblages between 20 and 55 m, but isolated populations occur down to 65 m depth. This species currently spreads over an area of 9.14 ha. Population coverage varies with depth, with the highest values at 35–40 m and an average cover of 62.34%. The calcified segments ofH. incrassataact as a stable substratum in these soft bottoms for the growth of other macroalgae, such as the rhodophytesLophocladia trichocladosandCottoniella filamentosa. Specimens reach lengths of up to 10 cm, shorter than individuals from the Caribbean. Although it is difficult to ascertain whether this species is a recent introduction, there is evidence of a correlation between the increase in population coverage and recent ocean warming, constituting another example of the tropicalization of the marine flora of this region.


Sign in / Sign up

Export Citation Format

Share Document