An Analysis of the Blended Three-Step Backward Differentiation Formula Time-Stepping Scheme for the Navier-Stokes-Type System Related to Soret Convection

2015 ◽  
Vol 36 (5) ◽  
pp. 658-686 ◽  
Author(s):  
S. S. Ravindran
2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
S. S. Ravindran

Micropolar fluid model consists of Navier-Stokes equations and microrotational velocity equations describing the dynamics of flows in which microstructure of fluid is important. In this paper, we propose and analyze a decoupled time-stepping algorithm for the evolutionary micropolar flow. The proposed method requires solving only one uncoupled Navier-Stokes and one microrotation subphysics problem per time step. We derive optimal order error estimates in suitable norms without assuming any stability condition or time step size restriction.


2014 ◽  
Vol 07 (01) ◽  
pp. 1350034 ◽  
Author(s):  
M. B. Suleiman ◽  
H. Musa ◽  
F. Ismail ◽  
N. Senu ◽  
Z. B. Ibrahim

A superclass of block backward differentiation formula (BBDF) suitable for solving stiff ordinary differential equations is developed. The method is of order 3, with smaller error constant than the conventional BBDF. It is A-stable and generates two points at each step of the integration. A comparison is made between the new method, the 2-point block backward differentiation formula (2BBDF) and 1-point backward differentiation formula (1BDF). The numerical results show that the method developed outperformed the 2BBDF and 1BDF methods in terms of accuracy. It also reduces the integration steps when compared with the 1BDF method.


2021 ◽  
Vol 5 (2) ◽  
pp. 579-583
Author(s):  
Muhammad Abdullahi ◽  
Bashir Sule ◽  
Mustapha Isyaku

This paper is aimed at deriving a 2-point zero stable numerical algorithm of block backward differentiation formula using Taylor series expansion, for solving first order ordinary differential equation. The order and zero stability of the method are investigated and the derived method is found to be zero stable and of order 3. Hence, the method is suitable for solving first order ordinary differential equation. Implementation of the method has been considered


2021 ◽  
Vol 5 (2) ◽  
pp. 442-446
Author(s):  
Muhammad Abdullahi ◽  
Hamisu Musa

This paper studied an enhanced 3-point fully implicit super class of block backward differentiation formula for solving stiff initial value problems developed by Abdullahi & Musa and go further to established the necessary and sufficient conditions for the convergence of the method. The method is zero stable, A-stable and it is of order 5. The method is found to be suitable for solving first order stiff initial value problems


Sign in / Sign up

Export Citation Format

Share Document