scholarly journals Analysis of a Decoupled Time-Stepping Scheme for Evolutionary Micropolar Fluid Flows

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
S. S. Ravindran

Micropolar fluid model consists of Navier-Stokes equations and microrotational velocity equations describing the dynamics of flows in which microstructure of fluid is important. In this paper, we propose and analyze a decoupled time-stepping algorithm for the evolutionary micropolar flow. The proposed method requires solving only one uncoupled Navier-Stokes and one microrotation subphysics problem per time step. We derive optimal order error estimates in suitable norms without assuming any stability condition or time step size restriction.

Author(s):  
S. S. Ravindran

Thermally coupled magneto-hydrodynamics (MHD) studies the dynamics of electro-magnetically and thermally driven flows,involving MHD equations coupled with heat equation. We introduce a partitioned method that allows one to decouplethe MHD equations from the heat equation at each time step and solve them separately. The extrapolated Crank-Nicolson time-stepping scheme is used for time discretizationwhile mixed finite element method is used for spatial discretization. We derive optimal order error estimates in suitable norms without assuming any stability condition or restrictions on the time step size. We prove the unconditional stability of the scheme. Numerical experiments are used to illustrate the theoretical results.


2013 ◽  
Vol 13 (2) ◽  
pp. 386-410 ◽  
Author(s):  
Björn Sjögreen ◽  
Jeffrey W. Banks

AbstractWe consider multi-physics computations where the Navier-Stokes equations of compressible fluid flow on some parts of the computational domain are coupled to the equations of elasticity on other parts of the computational domain. The different subdomains are separated by well-defined interfaces. We consider time accurate computations resolving all time scales. For such computations, explicit time stepping is very efficient. We address the issue of discrete interface conditions between the two domains of different physics that do not lead to instability, or to a significant reduction of the stable time step size. Finding such interface conditions is non-trivial.We discretize the problem with high order centered difference approximations with summation by parts boundary closure. We derive L2 stable interface conditions for the linearized one dimensional discretized problem. Furthermore, we generalize the interface conditions to the full non-linear equations and numerically demonstrate their stable and accurate performance on a simple model problem. The energy stable interface conditions derived here through symmetrization of the equations contain the interface conditions derived through normal mode analysis by Banks and Sjögreen in [8] as a special case.


2017 ◽  
Vol 21 (5) ◽  
pp. 1408-1428 ◽  
Author(s):  
Xiaoling Liu ◽  
Chuanju Xu

AbstractThis paper is concerned with numerical methods for the Navier-Stokes-Nernst-Planck-Poisson equation system. The main goal is to construct and analyze some stable time stepping schemes for the time discretization and use a spectral method for the spatial discretization. The main contribution of the paper includes: 1) an useful stability inequality for the weak solution is derived; 2) a first order time stepping scheme is constructed, and the non-negativity of the concentration components of the discrete solution is proved. This is an important property since the exact solution shares the same property. Moreover, the stability of the scheme is established, together with a stability condition on the time step size; 3) a modified first order scheme is proposed in order to decouple the calculation of the velocity and pressure in the fluid field. This new scheme equally preserves the non-negativity of the discrete concentration solution, and is stable under a similar stability condition; 4) a stabilization technique is introduced to make the above mentioned schemes stable without restriction condition on the time step size; 5) finally we construct a second order finite difference scheme in time and spectral discretization in space. The numerical tests carried out in the paper show that all the proposed schemes possess some desirable properties, such as conditionally/unconditionally stability, first/second order convergence, non-negativity of the discrete concentrations, and so on.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1652
Author(s):  
Dong-Sin Shih ◽  
Gour-Tsyh Yeh

One-dimensional (1D) Saint-Venant equations, which originated from the Navier–Stokes equations, are usually applied to express the transient stream flow. The governing equation is based on the mass continuity and momentum equivalence. Its momentum equation, partially comprising the inertia, pressure, gravity, and friction-induced momentum loss terms, can be expressed as kinematic wave (KIW), diffusion wave (DIW), and fully dynamic wave (DYW) flow. In this study, the method of characteristics (MOCs) is used for solving the diagonalized Saint-Venant equations. A computer model, CAMP1DF, including KIW, DIW, and DYW approximations, is developed. Benchmark problems from MacDonald et al. (1997) are examined to study the accuracy of the CAMP1DF model. The simulations revealed that CAMP1DF can simulate almost identical results that are valid for various fluvial conditions. The proposed scheme that not only allows a large time step size but also solves half of the simultaneous algebraic equations. Simulations of accuracy and efficiency are both improved. Based on the physical relevance, the simulations clearly showed that the DYW approximation has the best performance, whereas the KIW approximation results in the largest errors. Moreover, the field non-prismatic case of the Zhuoshui River in central Taiwan is studied. The simulations indicate that the DYW approach does not ensure achievement of a better simulation result than the other two approximations. The investigated cross-sectional geometries play an important role in stream routing. Because of the consideration of the acceleration terms, the simulated hydrograph of a DYW reveals more physical characteristics, particularly regarding the raising and recession of limbs. Note that the KIW does not require assignment of a downstream boundary condition, making it more convenient for field application.


2000 ◽  
Vol 123 (3) ◽  
pp. 680-685 ◽  
Author(s):  
L. He ◽  
K. Sato

A three-dimensional incompressible viscous flow solver of the thin-layer Navier-Stokes equations was developed for the unsteady turbomachinery flow computations. The solution algorithm for the unsteady flows combines the dual time stepping technique with the artificial compressibility approach for solving the incompressible unsteady flow governing equations. For time accurate calculations, subiterations are introduced by marching the equations in the pseudo-time to fully recover the incompressible continuity equation at each real time step, accelerated with a multi-grid technique. Computations of test cases show satisfactory agreements with corresponding theoretical and experimental results, demonstrating the validity and applicability of the present method to unsteady incompressible turbomachinery flows.


Author(s):  
S. H. Jeon ◽  
D. H. Hwang ◽  
J. H. Park ◽  
C. H. Kim ◽  
J. H. Baek ◽  
...  

Numerical investigation of the effect of the volute on stall flow phenomenon is presented by solving three-dimensional Reynolds-averaged compressible Navier-Stokes equations. Two different configurations of a centrifugal compressor were used to compare their performance: One is an original centrifugal compressor which is composed of impeller, splitter, vaned diffuser and a volute and the other is the one without a volute. Steady calculations were performed to predict aerodynamic performance in terms of the pressure ratio, efficiency and mass flow rate. The results show that the operating range of the compressor with a volute is narrower than that of the compressor without a volute. This can be interpreted that flow instability is strongly influenced by the tongue of a volute which is highly asymmetric. Unsteady calculations were also performed with a time-step size of 38μs corresponding to a pitch angle of 5 degrees at the given rotational speed. The flow characteristics for two configurations are analyzed and compared at various instantaneous times showing unsteady dynamic features. Based on the unsteady flow simulation, fast Fourier transform at several discrete points in semi-vaneless space was performed at peak efficiency and near surge point in order to illustrate the unstable flow physics in both configurations. It is found that the blade passing frequency is dominant, indicating that diffuser passages have a periodicity of 40 degrees due to the rotational blades. Besides blade passing frequency, there were several noticeable frequencies which affect the instability of the whole system. Those frequencies in both configurations are compared and analyzed in various aspects.


2013 ◽  
Vol 3 (3) ◽  
pp. 247-262 ◽  
Author(s):  
Wei-Fan Hu ◽  
Ming-Chih Lai

AbstractWe develop an unconditionally energy stable immersed boundary method, and apply it to simulate 2D vesicle dynamics. We adopt a semi-implicit boundary forcing approach, where the stretching factor used in the forcing term can be computed from the derived evolutional equation. By using the projection method to solve the fluid equations, the pressure is decoupled and we have a symmetric positive definite system that can be solved efficiently. The method can be shown to be unconditionally stable, in the sense that the total energy is decreasing. A resulting modification benefits from this improved numerical stability, as the time step size can be significantly increased (the severe time step restriction in an explicit boundary forcing scheme is avoided). As an application, we use our scheme to simulate vesicle dynamics in Navier-Stokes flow.


Author(s):  
Xian Luo ◽  
Martin R. Maxey ◽  
George E. Karniadakis

We re-formulate and demonstrate a new method for particulate flows, the so-called “Smoothed Profile” method (SPM) first proposed in [1]. The method uses a fixed computational mesh, which does not conform to the geometry of the particles. The particles are represented by certain smoothed indicator profiles to construct a smooth body force density term added into the Navier-Stokes equations. The SPM imposes accurately and efficiently the rigid-body constraint inside the particles. In particular, while the original method employs a fully-explicit time-integration scheme, we develop a high-order semi-implicit splitting scheme, which we implement in the context of spectral/hp element discretization. We show that the modeling error of SPM has a non-monotonic dependence on the time step size Δt. The optimum time step size balances the thickness of the Stokes layer and that of the profile interface. Subsequently, we present several numerical simulations, including flow past three-dimensional complex-shaped particles and two interacting microspheres, which are compared against full direct numerical simulations and the force coupling method (FCM).


2020 ◽  
Vol 8 (2) ◽  
pp. 89 ◽  
Author(s):  
Bradford Knight ◽  
Kevin Maki

Accurate and efficient prediction of the forces on a propeller is critical for analyzing a maneuvering vessel with numerical methods. CFD methods like RANS, LES, or DES can accurately predict the propeller forces, but are computationally expensive due to the need for added mesh discretization around the propeller as well as the requisite small time-step size. One way of mitigating the expense of modeling a maneuvering vessel with CFD is to apply the propeller force as a body force term in the Navier–Stokes equations and to apply the force to the equations of motion. The applied propeller force should be determined with minimal expense and good accuracy. This paper examines and compares nonlinear regression and neural network predictions of the thrust, torque, and side force of a propeller both in open water and in the behind condition. The methods are trained and tested with RANS CFD simulations. The neural network approach is shown to be more accurate and requires less training data than the regression technique.


2013 ◽  
Vol 21 (01) ◽  
pp. 1250019
Author(s):  
ANDREAS RICHTER ◽  
EVA BRUSSIES ◽  
JÖRG STILLER

A high-order interior penalty discontinuous Galerkin method for the compressible Navier–Stokes equations is introduced, which is a modification of the scheme given by Hartmann and Houston. In this paper we investigate the influence of penalization and boundary treatment on accuracy. By observing eigenvalues and condition numbers, a lower bound for the penalization term μ was found, whereas convergence studies depict reasonable upper bounds and a linear dependence on the critical time step size. By investigating conservation properties we demonstrate that different boundary treatments influence the accuracy by several orders of magnitude, and propose reasonable strategies to improve conservation properties.


Sign in / Sign up

Export Citation Format

Share Document