scholarly journals Some pathological observations on the naturally infected dromedary camels (Camelus dromedarius) with the Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia 2018–2019

2020 ◽  
Vol 40 (1) ◽  
pp. 190-197
Author(s):  
Abdelmohsen Alnaeem ◽  
Samy Kasem ◽  
Ibrahim Qasim ◽  
Ali Al-Doweriej ◽  
Ali Al-Houfufi ◽  
...  
mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Abdulaziz N. Alagaili ◽  
Thomas Briese ◽  
Nischay Mishra ◽  
Vishal Kapoor ◽  
Stephen C. Sameroff ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 717 ◽  
Author(s):  
Kandeil ◽  
Gomaa ◽  
Nageh ◽  
Shehata ◽  
Kayed ◽  
...  

: Dromedary camels are the natural reservoirs of the Middle East respiratory syndrome coronavirus (MERS-CoV). Camels are mostly bred in East African countries then exported into Africa and Middle East for consumption. To understand the distribution of MERS-CoV among camels in North Africa and the Middle East, we conducted surveillance in Egypt, Senegal, Tunisia, Uganda, Jordan, Saudi Arabia, and Iraq. We also performed longitudinal studies of three camel herds in Egypt and Jordan to elucidate MERS-CoV infection and transmission. Between 2016 and 2018, a total of 4027 nasal swabs and 3267 serum samples were collected from all countries. Real- time PCR revealed that MERS-CoV RNA was detected in nasal swab samples from Egypt, Senegal, Tunisia, and Saudi Arabia. Microneutralization assay showed that antibodies were detected in all countries. Positive PCR samples were partially sequenced, and a phylogenetic tree was built. The tree suggested that all sequences are of clade C and sequences from camels in Egypt formed a separate group from previously published sequences. Longitudinal studies showed high seroprevalence in adult camels. These results indicate the widespread distribution of the virus in camels. A systematic active surveillance and longitudinal studies for MERS-CoV are needed to understand the epidemiology of the disease and dynamics of viral infection.


2018 ◽  
Vol 27 (7) ◽  
pp. 1968-1978 ◽  
Author(s):  
Qianying Lin ◽  
Alice PY Chiu ◽  
Shi Zhao ◽  
Daihai He

Middle East respiratory syndrome coronavirus has been persistent in the Middle East region since 2012. Abundant scientific evidence showed that dromedary camels are the primary host of the virus. Majority of human cases (i.e., 75% or 88%) are due to human-to-human transmission, while the others are due to camel-to-human transmission. Mathematical modeling of Middle East respiratory syndrome coronavirus camel-to-camel transmission was lacking. Using the plug-and-play likelihood-based inference framework, we fitted a susceptible-exposed-infectious-recovered-susceptible model of camels to the reported human cases with a constant proportion of human cases from camels (i.e., either 25% or 12%). We considered two scenarios: (i) the transmission rate among camels is time-varying with a constant spill-over rate from camels to human or (ii) the spill-over rate is time-varying with a constant transmission rate among camels. Our estimated loss-of-immunity rate and prevalence of Middle East respiratory syndrome coronavirus infections among camels largely matched with previous serological or virological studies, shedding light on this issue. We recommended including dromedary camels in animal surveillance and control of Middle East respiratory syndrome coronavirus in Saudi Arabia which could help reduce their sporadic introductions to humans.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Thomas Briese ◽  
Nischay Mishra ◽  
Komal Jain ◽  
Iyad S. Zalmout ◽  
Omar J. Jabado ◽  
...  

ABSTRACTComplete Middle East respiratory syndrome coronavirus (MERS-CoV) genome sequences were obtained from nasal swabs of dromedary camels sampled in the Kingdom of Saudi Arabia through direct analysis of nucleic acid extracts or following virus isolation in cell culture. Consensus dromedary MERS-CoV genome sequences were the same with either template source and identical to published human MERS-CoV sequences. However, in contrast to individual human cases, where only clonal genomic sequences are reported, detailed population analyses revealed the presence of more than one genomic variant in individual dromedaries. If humans are truly infected only with clonal virus populations, we must entertain a model for interspecies transmission of MERS-CoV wherein only specific genotypes are capable of passing bottleneck selection.IMPORTANCEIn most cases of Middle East respiratory syndrome (MERS), the route for human infection with the causative agent, MERS coronavirus (MERS-CoV), is unknown. Antibodies to and viral nucleic acids of MERS-CoV have been found in dromedaries, suggesting the possibility that they may serve as a reservoir or vector for human infection. However, neither whole viral genomic sequence nor infectious virus has been isolated from dromedaries or other animals in Saudi Arabia. Here, we report recovery of MERS-CoV from nasal swabs of dromedaries, demonstrate that MERS-CoV whole-genome consensus sequences from dromedaries and humans are indistinguishable, and show that dromedaries can be simultaneously infected with more than one MERS-CoV. Together with data indicating widespread dromedary infection in the Kingdom of Saudi Arabia, these findings support the plausibility of a role for dromedaries in human infection.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Abdulaziz N. Alagaili ◽  
Thomas Briese ◽  
Nischay Mishra ◽  
Vishal Kapoor ◽  
Stephen C. Sameroff ◽  
...  

ABSTRACT The Middle East respiratory syndrome (MERS) is proposed to be a zoonotic disease; however, the reservoir and mechanism for transmission of the causative agent, the MERS coronavirus, are unknown. Dromedary camels have been implicated through reports that some victims have been exposed to camels, camels in areas where the disease has emerged have antibodies to the virus, and viral sequences have been recovered from camels in association with outbreaks of the disease among humans. Nonetheless, whether camels mediate transmission to humans is unresolved. Here we provide evidence from a geographic and temporal survey of camels in the Kingdom of Saudi Arabia that MERS coronaviruses have been circulating in camels since at least 1992, are distributed countrywide, and can be phylogenetically classified into clades that correlate with outbreaks of the disease among humans. We found no evidence of infection in domestic sheep or domestic goats. IMPORTANCE This study was undertaken to determine the historical and current prevalence of Middle East respiratory syndrome (MERS) coronavirus infection in dromedary camels and other livestock in the Kingdom of Saudi Arabia, where the index case and the majority of cases of MERS have been reported.


Sign in / Sign up

Export Citation Format

Share Document