Optimization of weld bonding process parameters of austenitic stainless steel 304L and low carbon steel sheet dissimilar joints

2016 ◽  
Vol 31 (14) ◽  
pp. 1591-1616 ◽  
Author(s):  
L. Boriwal ◽  
R. M. Sarviya ◽  
M. M. Mahapatra
2014 ◽  
Vol 2 (1) ◽  
pp. 59-76
Author(s):  
Abdullah Daie'e Assi

This research deals with the choice of the suitable filler metal to weld the similar and dissimilar metals (Low carbon steel type A516 & Austenitic stainless steel type 316L) under constant conditions such as, plate thickness (6 mm), voltage (78 v), current (120 A), straight polarity. This research deals with three major parts. The first parts Four types of electrodes were used for welding of dissimilar metals (C.St A516 And St.St 316L) two from mild steel (E7018, E6013) and other two from austenitic stainless steel (E309L, E308L) various inspection were carried out include (Visual T., X-ray T., δ- Ferrite phase T., and Microstructures T.) and mechanical testing include (tensile T., bending T. and micro hardness T.) The second parts done by used the same parameters to welding similar metals from (C.St A516) Or (St.St 316L). The third parts deals with welding of dissimilar weldments (C.St And St.St) by two processes, gas tungsten are welding (GTAW) and shielded metal are welding (SMAW).        The results indicated that the spread of carbon from low carbon steel to the welding zone in the case of welding stainless steel elect pole (E309L) led to Configuration Carbides and then high hardness the link to high values ​​compared with the base metal. In most similar weldments showed hardness of the welding area is  higher than the hardness of the base metal. The electrode (E309L) is the most suitable to welding dissimilar metals from (C.St A516 With St.St 316L). The results also showed that the method of welding (GTAW) were better than the method of welding (SMAW) in dissimilar welded joints (St.St 316L with C.St A516) in terms of irregular shape and integrity of the welding defects, as well as characterized this weldments the high-lift and resistance ductility good when using the welding conditions are similar.


2017 ◽  
Vol 685 ◽  
pp. 168-177 ◽  
Author(s):  
Badirujjaman Syed ◽  
Sulthan Mohiddin Shariff ◽  
Gadhe Padmanabham ◽  
Shaumik Lenka ◽  
Basudev Bhattacharya ◽  
...  

2005 ◽  
Vol 495-497 ◽  
pp. 1591-1596 ◽  
Author(s):  
Vladimir Luzin ◽  
S. Banovic ◽  
Thomas Gnäupel-Herold ◽  
Henry Prask ◽  
R.E. Ricker

Low carbon steel (usually in sheet form) has found a wide range of applications in industry due to its high formability. The inner and outer panels of a car body are good examples of such an implementation. While low carbon steel has been used in this application for many decades, a reliable predictive capability of the forming process and “springback” has still not been achieved. NIST has been involved in addressing this and other formability problems for several years. In this paper, texture produced by the in-plane straining and its relationship to springback is reported. Low carbon steel sheet was examined in the as-received condition and after balanced biaxial straining to 25%. This was performed using the Marciniak in-plane stretching test. Both experimental measurements and numerical calculations have been utilized to evaluate anisotropy and evolution of the elastic properties during forming. We employ several techniques for elastic property measurements (dynamic mechanical analysis, static four point bending, mechanical resonance frequency measurements), and several calculation schemes (orientation distribution function averaging, finite element analysis) which are based on texture measurements (neutron diffraction, electron back scattering diffraction). The following objectives are pursued: a) To test a range of different experimental techniques for elastic property measurements in sheet metals; b) To validate numerical calculation methods of the elastic properties by experiments; c) To evaluate elastic property changes (and texture development) during biaxial straining. On the basis of the investigation, recommendations are made for the evaluation of elastic properties in textured sheet metal.


Sign in / Sign up

Export Citation Format

Share Document