Permeability upscaling in complex carbonate samples using textures of micro-computed tomography images

2019 ◽  
Vol 40 (4) ◽  
pp. 245-259
Author(s):  
Mohamed Soufiane Jouini ◽  
Ali AlSumaiti ◽  
Moussa Tembely ◽  
Fawaz Hjouj ◽  
Khurshed Rahimov
2021 ◽  
Vol 20 ◽  
pp. 153303382110164
Author(s):  
Sang Bu An ◽  
Kwangmo Yang ◽  
Chang Won Kim ◽  
Si Ho Choi ◽  
Eunji Kim ◽  
...  

Introduction: Micro-computed tomography with nanoparticle contrast agents may be a suitable tool for monitoring the time course of the development and progression of tumors. Here, we suggest a practical and convenient experimental method for generating and longitudinally imaging murine liver cancer models. Methods: Liver cancer was induced in 6 experimental mice by injecting clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein 9 plasmids causing mutations in genes expressed by hepatocytes. Nanoparticle agents are captured by Kupffer cells and detected by micro-computed tomography, thereby enabling longitudinal imaging. A total of 9 mice were used for the experiment. Six mice were injected with both plasmids and contrast, 2 injected with contrast alone, and one not injected with either agent. Micro-computed tomography images were acquired every 2- up to 14-weeks after cancer induction. Results: Liver cancer was first detected by micro-computed tomography at 8 weeks. The mean value of hepatic parenchymal attenuation remained almost unchanged over time, although the standard deviation of attenuation, reflecting heterogeneous contrast enhancement of the hepatic parenchyma, increased slowly over time in all mice. Histopathologically, heterogeneous distribution and aggregation of Kupffer cells was more prominent in the experimental group than in the control group. Heterogeneous enhancement of hepatic parenchyma, which could cause image quality deterioration and image misinterpretation, was observed and could be due to variation in Kupffer cells distribution. Conclusion: Micro-computed tomography with nanoparticle contrast is useful in evaluating the induction and characteristics of liver cancer, determining appropriate size of liver cancer for testing, and confirming therapeutic response.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1488
Author(s):  
Sebastian Bollmann ◽  
Peter Kleinebudde

In silico tools which predict the dissolution of pharmaceutical dosage forms using virtual matrices can be validated with virtual matrices based on X-ray micro-computed tomography images of real pharmaceutical formulations. Final processed images of 3 different tablet batches were used to check the performance of the in silico tool F-CAD. The goal of this work was to prove the performance of the software by comparing the predicted dissolution profiles to the experimental ones and to check the feasibility and application of the validation concept for in silico tools. Both virtual matrices based on X-ray micro-computed tomography images and designed by the software itself were used. The resulting dissolution curves were compared regarding their similarity to the experimental curve. The kinetics were analysed with the Higuchi and Korsmeyers–Peppas plot. The whole validation concept as such was feasible and worked well. It was possible to identify prediction errors of the software F-CAD and issues with the virtual tablets designed within the software.


2019 ◽  
Vol 11 (9) ◽  
pp. 1110 ◽  
Author(s):  
Biao Xiong ◽  
Bo Wang ◽  
Shengwu Xiong ◽  
Chengde Lin ◽  
Xiaohui Yuan

Wheat is the main food crop today world-wide. In order to improve its yields, researchers are committed to understand the relationships between wheat genotypes and phenotypes. Compared to progressive technology of wheat gene section identification, wheat trait measurement is mostly done manually in a destructive, labor-intensive and time-consuming way. Therefore, this study will be greatly accelerated and promoted if we can automatically discover wheat phenotype in a nondestructive and fast manner. In this paper, we propose a novel pipeline based on 3D morphological processing to detect wheat spike grains and stem nodes from 3D X-ray micro computed tomography (CT) images. We also introduce a set of newly defined 3D phenotypes, including grain aspect ratio, porosity, Grain-to-Grain distance, and grain angle, which are very difficult to be manually measured. The analysis of the associations among these traits would be very helpful for wheat breeding. Experimental results show that our method is able to count grains more accurately than normal human performance. By analyzing the relationships between traits and environment conditions, we find that the Grain-to-Grain distance, aspect ratio and porosity are more likely affected by the genome than environment (only tested temperature and water conditions). We also find that close grains will inhibit grain volume growth and that the aspect ratio 3.5 may be the best for higher yield in wheat breeding.


2019 ◽  
Vol 20 (3) ◽  
pp. 279-284
Author(s):  
Sérgio AP Freitas ◽  
Francine K Panzarella ◽  
Roseli H Karia ◽  
Mariana RM Cavaletti ◽  
José Luiz C Junqueira ◽  
...  

2019 ◽  
Vol 18 ◽  
pp. 153303381984448
Author(s):  
Tao Lin ◽  
Xinye Ni ◽  
Liugang Gao ◽  
Jianfeng Sui ◽  
Kai Xie ◽  
...  

Purpose: To study the effect of a metal tracheal stent on radiation dose distribution. Method: A metal tube bracket is placed in a self-made foam tube sleeve, and micro-computed tomography scanning is performed directly. The foam sleeve containing the metal bracket is placed in a nonuniform phantom for a routine computed tomography scan. The stents in conventional computed tomography images are replaced by the stents in micro-computed tomography images. Subsequently, 2 sets of computed tomography images are obtained and then imported to a radiotherapy treatment planning system. A single photon beam at 0° is designed in a field size of 10 cm × 10 cm, a photon beam of 6 MV, and a monitor unit of 200 MU. Monte Carlo algorithm is used to calculate the dose distribution and obtain the dose curve of the central axis of the field. The dose is verified with thermoluminescence dose tablets. Results: The micro-computed tomography images of the tracheal stent are clearer and less false-like than its conventional computed tomography images. The planned dose curves of the 2 groups are similar. In comparison with the images without any stents in place, the doses at the incident surface of the stent in the conventional computed tomography images and at the stent exit surface in the rear of the stent increase by 1.86% and 2.76%, respectively. In the micro-computed tomography images, the doses at the incident surface of the stent and at the exit surface behind the stent increase by 1.32% and 1.19%, respectively. Conventional computed tomography reveals a large deviation between the measured and calculated values. Conclusion: Tracheal stent based on micro-computed tomography imaging has a less effect on radiotherapy calculation than that based on conventional computed tomography imaging.


Sign in / Sign up

Export Citation Format

Share Document