scholarly journals Estimating daily streamflow in the Congo Basin using satellite-derived data and a semi-distributed hydrological model

2019 ◽  
Vol 64 (12) ◽  
pp. 1472-1487 ◽  
Author(s):  
Yolande A. Munzimi ◽  
Matthew C. Hansen ◽  
Kwabena O. Asante
2021 ◽  
Author(s):  
Bruno Majone ◽  
Diego Avesani ◽  
Patrick Zulian ◽  
Aldo Fiori ◽  
Alberto Bellin

Abstract. Climate change impact studies on hydrological extremes often rely on the use of hydrological models with parameters inferred by using observational data of daily streamflow. In this work we show that this is an error prone procedure when the interest is to develop reliable Empirical Cumulative Distribution Function curves of annual streamflow maximum. As an alternative approach we introduce a methodology, coined Hydrological Calibration of eXtremes (HyCoX), in which the calibration of the hydrological model is carried out by directly targeting the probability distribution of high flow extremes. In particular, hydrological simulations conducted during a reference period, as driven by climate models’ outputs, are constrained to maximize the probability that the modeled and observed high flow extremes belong to the same population. The application to the Adige river catchment (southeastern Alps, Italy) by means of HYPERstreamHS, a distributed hydrological model, showed that this procedure preserves statistical coherence and produce reliable quantiles of the annual maximum streamflow to be used in assessment studies.


2009 ◽  
Vol 13 (6) ◽  
pp. 735-747 ◽  
Author(s):  
X. Liu ◽  
L. Ren ◽  
F. Yuan ◽  
V. P. Singh ◽  
X. Fang ◽  
...  

Abstract. Changes in land use and land cover (LULC) have been occurring at an accelerated pace in northern parts of China. These changes are significantly impacting the hydrology of these parts, such as Laohahe Catchment. The hydrological effects of these changes occurring in this catchment were investigated using a semi-distributed hydrological model. The semi-distributed hydrological model was coupled with a two-source potential evaportranspiration (PET) model for simulating daily runoff. Model parameters were calibrated using hydrometeorological and LULC data for the same period. The LULC data were available for 1980, 1989, 1996 and 1999. Daily streamflow measurements were available from 1964 to 2005 and were divided into 4 periods: 1964–1979, 1980–1989, 1990–1999 and 2000–2005. These periods represented four different LULC scenarios. Streamflow simulation was conducted for each period under these four LULC scenarios. The results showed that the change in LULC influenced evapotranspiration (ET) and runoff. The LULC data showed that from 1980 to 1996 grass land and water body had decreased and forest land and crop land had increased. This change caused the evaporation from vegetation interception and vegetation transpiration to increase, whereas the soil evaporation tended to decrease. Thus during the period of 1964–1979 the green water or ET increased by 0.95%, but the blue water or runoff decreased by 8.71% in the Laohahe Catchment.


Sign in / Sign up

Export Citation Format

Share Document