Mechanical work and physiological responses to simulated cross country mountain bike racing

2012 ◽  
Vol 30 (14) ◽  
pp. 1491-1501 ◽  
Author(s):  
Paul William Macdermid ◽  
Stephen Stannard
2018 ◽  
Vol 18 (4) ◽  
pp. 343-353
Author(s):  
Matthew C. Miller ◽  
Philip W. Fink ◽  
Paul W. Macdermid ◽  
Stephen R. Stannard

Author(s):  
Meredith Ehn ◽  
Masaru Teramoto ◽  
Daniel M. Cushman ◽  
Kristen Saad ◽  
Stuart Willick

Interscholastic youth cross-country mountain bike racing in the United States has grown significantly over the past decade, yet little is known about the risk profile in this age group. Aiming to protect participants, we implemented a prospective, longitudinal injury surveillance system for the purpose of better understanding youth mountain biking injuries and implementing safety measures. Data were collected during competition years 2018–2020, totaling 66,588 student athlete-years. Designated reporters from each team received weekly emails with exposure and incident report forms. Variables analyzed included demographic, rider-related, trail-related, and other data. Injury characteristics during the COVID-19 pandemic in 2020 were compared to the years 2018 and 2019. More student athletes participated in the 2020 season (25,261) than in prior seasons (18,575 in 2018 and 22,752 in 2019). During competition year 2020, overall injury proportion was lower (1.7% versus 3.0% in 2018 and 2.7% in 2019). Variables associated with injury, body part injured, type of injury, time-loss, and disposition following injury were similar between all years. Despite the pandemic and resultant changes to competition, student athletes continued to ride their bikes and become injured, but the proportion of injuries differed. This report details injury characteristics in youth mountain bike racing, including a comparison of before and during the pandemic.


2018 ◽  
Vol 13 (9) ◽  
pp. 1243-1249 ◽  
Author(s):  
Cyril Granier ◽  
Chris R. Abbiss ◽  
Anaël Aubry ◽  
Yvon Vauchez ◽  
Sylvain Dorel ◽  
...  

Purpose: To characterize the physiological profiles of elite cross-country mountain-bike (XCO-MTB) cyclists and to examine their pacing and power-output (PO) distribution during international races. Methods: Over 2 competitive seasons, 8 male XCO-MTB cyclists (VO2max 79.9 [5.2] mL·min−1·kg−1, maximal aerobic power [MAP] 411 [18] W and 6.3 [0.4] W·kg−1) regularly undertook incremental tests to assess their PO and heart rate (HR) at first and second ventilatory thresholds (VT1 and VT2) and at VO2max. During the same period, their PO, HR, speed, and cadence were recorded over 13 international races (total of 30 recorded files). Results: Mean PO, speed, cadence, and HR during the races were 283 (22) W (4.31 [0.32] W·kg−1, 68% [5%] MAP), 19.7 (2.1) km·h−1, 68 (8) rpm, and 172 (11) beats·min−1 (91% [2%] HRmax), respectively. The average times spent below 10% of MAP, between 10% of MAP and VT1, between VT1 and VT2, between VT2 and MAP, and above MAP were 25% (5%), 21% (4%), 13% (3%), 16% (3%), and 26% (5%), respectively. Both speed and PO decreased from the start loop to lap 1 before stabilizing until the end of the race.Conclusions: Elite off-road cyclists demonstrated typical values of world-class endurance cyclists with an excellent power-to-mass ratio. This study demonstrated that XCO-MTB races are performed at higher intensities than reported in previous research and are characterized by a fast start followed by an even pace.


Author(s):  
Bernhard Prinz ◽  
Dieter Simon ◽  
Harald Tschan ◽  
Alfred Nimmerichter

Purpose: To determine aerobic and anaerobic demands of mountain bike cross-country racing. Methods: Twelve elite cyclists (7 males;  = 73.8 [2.6] mL·min-1·kg−1, maximal aerobic power [MAP] = 370 [26] W, 5.7 [0.4] W·kg−1, and 5 females;  = 67.3 [2.9] mL·min−1·kg−1, MAP = 261 [17] W, 5.0 [0.1] W·kg−1) participated over 4 seasons at several (119) international and national races and performed laboratory tests regularly to assess their aerobic and anaerobic performance. Power output, heart rate, and cadence were recorded throughout the races. Results: The mean race time was 79 (12) minutes performed at a mean power output of 3.8 (0.4) W·kg−1; 70% (7%) MAP (3.9 [0.4] W·kg−1 and 3.6 [0.4] W·kg−1 for males and females, respectively) with a cadence of 64 (5) rev·min−1 (including nonpedaling periods). Time spent in intensity zones 1 to 4 (below MAP) were 28% (4%), 18% (8%), 12% (2%), and 13% (3%), respectively; 30% (9%) was spent in zone 5 (above MAP). The number of efforts above MAP was 334 (84), which had a mean duration of 4.3 (1.1) seconds, separated by 10.9 (3) seconds with a mean power output of 7.3 (0.6) W·kg−1 (135% [9%] MAP). Conclusions: These findings highlight the importance of the anaerobic energy system and the interaction between anaerobic and aerobic energy systems. Therefore, the ability to perform numerous efforts above MAP and a high aerobic capacity are essential to be competitive in mountain bike cross-country.


2018 ◽  
Vol 37 (10) ◽  
pp. 1154-1161 ◽  
Author(s):  
Jacob Bejder ◽  
Thomas Christian Bonne ◽  
Michael Nyberg ◽  
Kim Anker Sjøberg ◽  
Nikolai Baastrup Nordsborg
Keyword(s):  

2018 ◽  
Vol 9 ◽  
Author(s):  
Arnaud Hays ◽  
Simon Devys ◽  
Denis Bertin ◽  
Laurie-anne Marquet ◽  
Jeanick Brisswalter
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document