A novel [Mn2(μ-(C6H5)2CHCOO)2(bipy)4](bipy)(ClO4)2 complex loaded solid lipid nanoparticles: synthesis, characterization and in vitro cytotoxicity on MCF-7 breast cancer cells

2016 ◽  
Vol 33 (6) ◽  
pp. 575-584 ◽  
Author(s):  
G. Guney Eskiler ◽  
G. Cecener ◽  
G. Dikmen ◽  
I. Kani ◽  
U. Egeli ◽  
...  
Author(s):  
Gamze Guney Eskiler ◽  
Gulsah Cecener ◽  
Gokhan Dikmen ◽  
Lutfi Genc ◽  
Unal Egeli

<p class="lead">To overcome the acquired Tamoxifen (Tam) resistance in Tam-resistant breast cancer cells without damaging normal cells, we have examined the therapeutic efficacy of Tam-loaded solid lipid nanoparticles (SLNs). Tam-loaded SLNs were produced by hot homogenization method. After characterization, <em>in vitro</em> cytotoxic and apoptotic activity of Tam-SLNs were evaluated in MCF7, MCF7-TamR (Tam-resistant breast cancer cells) and MCF10A cells. Tam-SLNs had an average size nearly 300 nm and a zeta potential of approximately-40 mV. <em>In vitro</em> cytotoxicity results showed that Tam-SLNs indicated the cytotoxic and apoptotic activity on MCF7 and MCF7-TamR cells. We found that MCF7-TamR cell viability was also suppressed significantly by Tam-SLNs and thus, Tam-SLNs could delay and overcome Tam-resistance (p&lt;0.05). Furthermore, the Tam-SLNs did not induce apoptosis on MCF10A control cells. The lowest MCF10A cell viability was 83.0% whereas MCF7 and MCF7-TamR (R↔ and R↑) cells viability are reduced to 21.98%, 27.5% and 29.4% at 10 µM of Tam-SLNs, respectively (p&lt;0.05). The obtained results were supported by apoptosis assays. SLNs-delivery system provided therapeutic efficacy to overcome Tam-resistance thanks to unique features of SLNs including small size, drug accumulation in the tumor site and controlled drug release. Therefore, Tam-SLNs may have therapeutic potential for the treatment of TAM-resistant breast cancer.</p>


Sign in / Sign up

Export Citation Format

Share Document