Effect of molecular structure of a dichroic dye and the ordering of a liquid crystal on the dichroism of the dye-liquid crystal binary mixtures

1989 ◽  
Vol 5 (5) ◽  
pp. 1405-1413 ◽  
Author(s):  
W. S. Park ◽  
T. Uchida
2001 ◽  
Vol 30 (4) ◽  
pp. 330-331 ◽  
Author(s):  
Jianwei Wu ◽  
Hiroaki Okamoto ◽  
Shunsuke Takenaka

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 732
Author(s):  
Anna P. Gardymova ◽  
Mikhail N. Krakhalev ◽  
Victor Ya. Zyryanov ◽  
Alexandra A. Gruzdenko ◽  
Andrey A. Alekseev ◽  
...  

The electro-optical properties of polymer dispersed liquid crystal (PDLC) films are highly dependent on the features of the contained liquid crystal (LC) droplets. Cholesteric LC droplets with homeotropic boundaries can form several topologically different orientational structures, including ones with single and more point defects, layer-like, and axisymmetric twisted toroidal structures. These structures are very sensitive to an applied electric field. In this work, we have demonstrated experimentally and by computer simulations that twisted toroidal droplets reveal strong structural response to the electric field. In turn, this leads to vivid changes in the optical texture in crossed polarizers. The response of droplets of different sizes were found to be equivalent in terms of dimensionless parameters. In addition, the explanation of this phenomenon showed a comparison of theoretical and experimental structural response curves aids to determine the shape of the droplet. Finally, we demonstrated that the addition of a dichroic dye allows such films to be used as optical filters with adjustable color even without polarizers.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 736
Author(s):  
Kyutae Seo ◽  
Hyo Kang

We synthesized a series of polystyrene derivatives that were modified with precursors of liquid crystal (LC) molecules, such as 4-ethyloxyphenol (homopolymer PEOP and copolymer PEOP#; # = 20, 40, 60, and 80, where # indicates the molar fraction of 4-ethyloxyphenoxymethyl in the side chain), 4-n-butyloxyphenol (PBOP), 4-n-hexyloxyphenol (PHOP), and 4-n-octyloxyphenol (POOP), via polymer modification reaction to investigate the orientation of LC molecules on polymer films, exhibiting part of the LC molecular structure. LC molecules showed a stable and uniform vertical orientation in LC cells fabricated with polymers that have 4-ethyloxyphenoxymethyl in the range of 40–100 mol%. In addition, similar results were obtained in LC cells fabricated with homopolymers of PEOP, PBOP, PHOP, and POOP. The vertical orientation of LC molecules in LC cells fabricated with polymer films correlated to the surface energy of polymer films. For example, vertical LC orientation was observed when the total surface energies of the polymer films were lower than approximately 43.2 mJ/m2. Good alignment stabilities were observed at 150 °C and 20 J/cm2 of ultraviolet irradiation for LC cells fabricated with PEOP film.


Sign in / Sign up

Export Citation Format

Share Document