Reaction-diffusion in a simple pooled chemical system

1989 ◽  
Vol 4 (2) ◽  
pp. 141-167 ◽  
Author(s):  
J. H. Merkin ◽  
D. J. Needham

Autocatalytic chemical reactions can support isothermal travelling waves of constant speed and form. This paper extends previous studies to cubic autocatalysis and to mixed systems where quadratic and cubic autocatalyses occur concurrently. A + B → 2B, rate = k q ab , (1) A + 2B → 3B, rate = k c ab 2 . (2) For pure cubic autocatalysis the wave has, at large times, a constant asymptotic speed v 0 (where v 0 = 1/√2 in the appropriate dimensionless units). This result is confirmed by numerical investigation of the initial-value problem. Perturbations to this stable wave-speed decay at long times as t -3/2 e -1/8 t . The mixed system is governed by a non-dimensional parameter μ = k q / k c a 0 which measures the relative rates of transformation by quadratic and cubic modes. In the mixed case ( μ ≠ 0) the reaction-diffusion wave has a form appropriate to a purely cubic autocatalysis so long as μ lies between ½ and 0. When μ exceeds ½, the reaction wave loses its symmetrical form, and all its properties steadily approach those of quadratic autocatalysis. The value μ = ½ is the value at which rates of conversion by the two paths are equal.


2019 ◽  
Vol 42 (10) ◽  
pp. 548-557 ◽  
Author(s):  
Aidin Hajikhani ◽  
Franca Scocozza ◽  
Michele Conti ◽  
Michele Marino ◽  
Ferdinando Auricchio ◽  
...  

Alginate-based hydrogels are extensively used to create bioinks for bioprinting, due to their biocompatibility, low toxicity, low costs, and slight gelling. Modeling of bioprinting process can boost experimental design reducing trial-and-error tests. To this aim, the cross-linking kinetics for the chemical gelation of sodium alginate hydrogels via calcium chloride diffusion is analyzed. Experimental measurements on the absorbed volume of calcium chloride in the hydrogel are obtained at different times. Moreover, a reaction-diffusion model is developed, accounting for the dependence of diffusive properties on the gelation degree. The coupled chemical system is solved using finite element discretizations which include the inhomogeneous evolution of hydrogel state in time and space. Experimental results are fitted within the proposed modeling framework, which is thereby calibrated and validated. Moreover, the importance of accounting for cross-linking-dependent diffusive properties is highlighted, showing that, if a constant diffusivity property is employed, the model does not properly capture the experimental evidence. Since the analyzed mechanisms highly affect the evolution of the front of the solidified gel in the final bioprinted structure, the present study is a step towards the development of reliable computational tools for the in silico optimization of protocols and post-printing treatments for bioprinting applications.


The possibility of travelling reaction-diffusion waves developing in the isothermal chemical system governed by the cubic autocatalytic reaction A + 2B → 3B (rate k 3 ab 2 ) coupled with either the linear decay step B → C (rate k 2 b ) or the quadratic decay step B + B → C (rate k 4 b 2 ) is examined. Two simple solutions are obtained,namely the well-stirred analogue of the spatially inhomogeneous problem and the solution for small input of the autocatalyst B. Both of these suggest that, for the quadratic decay case, a wave will develop only if the non-dimensional parameter k ═ k 4 / k 3 a 0 < 1 (where a 0 is the initial concentration of the reactant A), with there being no restriction on the initial input of the autocatalyst B. However, for the linear decay case the initiation of a travelling wave depends on the parameter v ═ k 2 / k 3 a 2 0 and that, in addition, there is an input threshold on B before the formation of a wave will occur. The equations governing the fully developed travelling waves are then considered and it is shown that for the quadratic decay case the situation is similar to previous work in quadratic autocatalysis with linear decay, with a necessary condition for the existence of a travelling-wave solution being that K < 1. However, the case of linear decay is quite different, with a necessary condition for the existence of a travelling wave solution now found to be v < 1/4 Numerical solutions of the equations governing this case reveal further that a solution exists only for v < v c , with v c ≈ 0.0465, and that there are two branches of solution for 0 < v < v c . The behaviour of these lower branch solutions as v → 0 is discussed. The initial-value problem is then considered. For the quadratic decay case it is shown that the uniform state a ═ a 0 , b ═ 0 is globally asymptotically stable (i. e. a → a 0 , b → 0 uniformly for large times) for all k > 1. For the linear decay case it is shown that the development of a travelling wave requires β 0 > v (where β 0 is a measure of the initial input of B) for v < v c . These theoretical results are then complemented by numerical solutions of the initial-value problem for both cases, which confirm the various predictions of the theory. The behaviour of the solution of the equations governing the travelling waves is then discussed in the limits K → 0, v → 0 and K → 1. In the first case the solution approaches the solution for K ═ 0 (or v =0) on the length scale of the reaction-diffusion front, with there being a long tail region of length scale O ( K -1 ) (or O ( v -1 )) in which the autocatalyst B decays to zero. In the latter case we find that the concentration of reactant A is 1 + O [(1 - k )] and autocatalyst B is O[(1 - k 2 ] with the thickness of the reaction-diffusion front becoming large, of thickness O [(1- k ) -3/2 ].


We examine the possibility of generating a propagating chemical wave front when a local input of an autocatalyst B is introduced into a uniform concentration of a reactant A. The autocatalysis is assumed to be of order m so that A -> B at a rate k 1 [A][B] m , while the autocatalyst decays to an inert product C at a rate of order n , B -> C, rate k 2 [B] n . The situation is examined for m, n > 1 and emphasis placed on obtaining threshold criteria for the development of reaction-diffusion fronts.


2006 ◽  
Vol 16 (10) ◽  
pp. 2985-3005 ◽  
Author(s):  
ANDREW ADAMATZKY ◽  
GENARO JUÁREZ MARTÍNEZ ◽  
JUAN CARLOS SECK TUOH MORA

We study a binary-cell-state eight-cell neighborhood two-dimensional cellular automaton model of a quasi-chemical system with a substrate and a reagent. Reactions are represented by semi-totalistic transitions rules: every cell switches from state 0 to state 1 depending on if the sum of neighbors in state 1 belongs to some specified interval, cell remains in state 1 if the sum of neighbors in state 1 belong to another specified interval. We investigate space-time dynamics of 1296 automata, establish morphology-bases classification of the rules, explore precipitating and excitatory cases and scrutinize collisions between mobile and stationary localizations (gliders, cycle life and still-life compact patterns). We explore reaction–diffusion like patterns produced as a result of collisions between localizations. Also, we propose a set of rules with complex behavior called Life 2c22.


Sign in / Sign up

Export Citation Format

Share Document