binary state
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 53)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
pp. 1-108 ◽  
Author(s):  
Pedro Conceição ◽  
Dejan Govc ◽  
Jānis Lazovskis ◽  
Ran Levi ◽  
Henri Riihimäki ◽  
...  

Abstract A binary state on a graph means an assignment of binary values to its vertices. A time dependent sequence of binary states is referred to as binary dynamics. We describe a method for the classification of binary dynamics of digraphs, using particular choices of closed neighbourhoods. Our motivation and application comes from neuroscience, where a directed graph is an abstraction of neurons and their connections, and where the simplification of large amounts of data is key to any computation. We present a topological/graph theoretic method for extracting information out of binary dynamics on a graph, based on a selection of a relatively small number of vertices and their neighbourhoods. We consider existing and introduce new real-valued functions on closed neighbourhoods, comparing them by their ability to accurately classify different binary dynamics. We describe a classification algorithm that uses two parameters and sets up a machine learning pipeline. We demonstrate the effectiveness of the method on simulated activity on a digital reconstruction of cortical tissue of a rat, and on a non-biological random graph with similar density.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajkumar Bhimgonda Patil ◽  
Suyog Subhash Patil ◽  
Gajanand Gupta ◽  
Anand K. Bewoor

PurposeThe purpose of this paper is to carry out a reliability analysis of a mechanical system considering the degraded states to get a proper understanding of system behavior and its propagation towards complete failure.Design/methodology/approachThe reliability analysis of computerized numerical control machine tools (CNCMTs) using a multi-state system (MSS) approach that considers various degraded states rather than a binary approach is carried out. The failures of the CNCMT are classified into five states: one fully operational state, three degraded states and one failed state.FindingsThe analysis of failure data collected from the field and tests conducted in the laboratory provided detailed understandings about the quality of the material and its failure behavior used in designing and the capability of the manufacturing system. The present work identified that Class II (major failure) is critical from a maintainability perspective whereas Class III (moderate failure) and Class IV (minor failure) are critical from a reliability perspective.Research limitations/implicationsThis research applies to reliability data analysis of systems that consider various degraded states.Practical implicationsMSS reliability analysis approach will help to identify various degraded states of the system that affect the performance and productivity and also to improve system reliability, availability and performance.Social implicationsIndustrial system designers recognized that reliability and maintainability is a critical design attribute. Reliability studies using the binary state approach are insufficient and incorrect for the systems with degraded failures states, and such analysis can give incorrect results, and increase the cost. The proposed MSS approach is more suitable for complex systems such as CNCMT rather than the binary-state system approach.Originality/valueThis paper presents a generalized framework MSS's failure and repair data analysis has been developed and applied to a CNCMT.


2021 ◽  
Vol 118 (50) ◽  
pp. e2111436118
Author(s):  
Hadrien Bense ◽  
Martin van Hecke

The nonlinear response of driven complex materials—disordered magnets, amorphous media, and crumpled sheets—features intricate transition pathways where the system repeatedly hops between metastable states. Such pathways encode memory effects and may allow information processing, yet tools are lacking to experimentally observe and control these pathways, and their full breadth has not been explored. Here we introduce compression of corrugated elastic sheets to precisely observe and manipulate their full, multistep pathways, which are reproducible, robust, and controlled by geometry. We show how manipulation of the boundaries allows us to elicit multiple targeted pathways from a single sample. In all cases, each state in the pathway can be encoded by the binary state of material bits called hysterons, and the strength of their interactions plays a crucial role. In particular, as function of increasing interaction strength, we observe Preisach pathways, expected in systems of independently switching hysterons; scrambled pathways that evidence hitherto unexplored interactions between these material bits; and accumulator pathways which leverage these interactions to perform an elementary computation. Our work opens a route to probe, manipulate, and understand complex pathways, impacting future applications in soft robotics and information processing in materials.


Author(s):  
Chen Fang ◽  
Lirong Cui

Based on some real backgrounds, a new balanced system structure, a consecutive k-out-of- m: F system with a symmetry line, is proposed in this paper. Considering different state numbers of a subsector, the new balanced system is analyzed under two situations respectively: the subsector with binary-state and the subsector with multi-state, while the multi-state balanced systems have not been studied in the previous research. Besides, two models are developed in terms of assumptions for the two situations, respectively. For this system, several methods, such as the finite Markov chain imbedding approach, the order statistics technique and the phase-type distributions, are used on the models. In addition to system reliability formulas, the means and variances of the system lifetimes under two models for different situations are given. Finally, numerical examples are presented to illustrate the results obtained in this paper.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 899
Author(s):  
Hagyoul Bae ◽  
Geon-Beom Lee ◽  
Jae Hur ◽  
Jun-Young Park ◽  
Da-Jin Kim ◽  
...  

For the first time, a novel germanium (Ge) bi-stable resistor (biristor) with a vertical pillar structure was implemented on a bulk substrate. The basic structure of the Ge pillar-typed biristor is a p-n-p bipolar junction transistor (BJT) with an open base (floating), which is equivalent to a gateless p-channel metal oxide semiconductor field-effect transistor (MOSFET). In the pillar formation, we adopted an amorphous carbon layer to protect the Ge surface from both physical and chemical damage by subsequent processes. A hysteric current-voltage (I-V) characteristic, which results in a sustainable binary state, i.e., high current and low current at the same voltage, can be utilized for a memory device. A lower operating voltage with high current was achieved, compared to a Si biristor, due to the low energy bandgap of pure Ge.


Author(s):  
Tang Tang ◽  
Lijuan Jia ◽  
Jin Hu ◽  
Yue Wang ◽  
Cheng Ma

The reliability theory of the multi-state system (MSS) has received considerable attention in recent years, as it is able to characterize the multi-state property and complicated deterioration process of systems in a finer way than that of binary-state system. In general, the performance of the task processing type MSS is typically measured by an operation time (processing speed). Whereas, considering the queueing phenomenon caused by the random arrival and processing of tasks, some other criteria should be taken into account to evaluate the quality of service (QoS) and the profit of stakeholders, such as waiting time, service and abandon rate of tasks and consequent profit rate. In this article, we focus on the queueing process of tasks and analyse the performance and reliability of MSS in an M/M/2 queueing model, which is referred to as a multi-state queueing system (MSQS). Two kinds of deterioration are studied including the gradual degradation of servers and the sudden breakdown of the whole system. A performance assessment function is defined to obtain the profit rate of MSQS in different performance states. Based on the proposed performance function, the selective maintenance method is studied to optimize the accumulated profit under the constraint of maintenance resource and time.


Author(s):  
He Yi ◽  
Narayanaswamy Balakrishnan ◽  
Xiang Li

The joint signatures of binary-state and multi-state (semi-coherent or mixed) systems with i.i.d. (independent and identically distributed) binary-state components are considered in this work. For the comparison of pairs of binary-state systems of different sizes, transformation formulas of their joint signatures are derived by using the concept of equivalent systems and a generalized triangle rule for order statistics. Similarly, for facilitating the comparison of pairs of multi-state systems of different sizes, transformation formulas of their multi-state joint signatures are also derived. Some examples are finally presented to illustrate and to verify the theoretical results established here.


Sign in / Sign up

Export Citation Format

Share Document