MULTI-MODE ANALYSIS OF A TWO COAXIAL CUP PRIME FOCUS FEED WITH AN INFINITE FLANGE

1989 ◽  
Vol 9 (3) ◽  
pp. 281-311
Author(s):  
C. J. Papathomas ◽  
R. E. Collin
2015 ◽  
Vol 8 (7) ◽  
pp. 1031-1035 ◽  
Author(s):  
Ting Zhang ◽  
Fei Xiao ◽  
Xiaohong Tang ◽  
Lei Guo

In this paper, a novel multi-mode resonator is presented, which is formed by cascading several open-circuited transmission line sections with a coupled-line section. Owing to its symmetry, even- and odd-mode analysis methods are applied to analyze its resonance characteristic. Based on this resonator, a microstrip ultra-wide bandwidth (UWB) bandpass filter is designed, fabricated, and measured. The simulated and measured results show that its bandwidth can cover the desired UWB. Return loss in passband is better than −14 dB. This filter is featured by good selectivity and wide stopband. Stopband suppression as low as −40 dB can be achieved within frequency range from 12 to 16 GHz.


1981 ◽  
Vol 71 (4) ◽  
pp. 985-1002
Author(s):  
Michel Cara ◽  
J. Bernard Minster ◽  
Ronan Le Bras

abstract The UC diagram technique described in the companion paper (Part 1), is applied to nine sets of Lg phases recorded through the CEDAR system in southern California, and two sets of Lg phases recorded along the northwestern margin of the Sierra Nevada. A clear image of the signal is obtained in time-frequency-wavenumber space, and we discuss in particular observations at 2.5-sec period, for events 200 to 300 km outside the profiles. From the gross features of UC diagrams we conclude that a representation of Lg as a single coherent multi-mode wave train is oversimplified in the case of southern California but is more appropriate for the Sierra block. In southern California, peaks observed at group velocities smaller than 3.2 km/sec are not predicted by realistic crustal models of the area, and are probably due to lateral heterogeneities effects such as mode conversion and multipathing. On the other hand, for group velocities between 3.2 and 3.6 km/sec, peaks observed in either area can generally be interpreted in terms of overtones excited at the source and propagating through spatially averaged structures, although care must be taken to monitor the stability of the algorithm on actual short-period records.


2021 ◽  
Vol 35 (11) ◽  
pp. 1280-1281
Author(s):  
Binbin Yang ◽  
Abdullah Eroglu ◽  
Jacob Adams

This paper demonstrates a shape synthesis technique for multi-mode dielectric resonator antennas using binary genetic algorithm and characteristic mode analysis. The cost function for the synthesis process is defined from characteristic modal parameters, such as modal quality factors and self-resonance frequencies. Since only modal parameters are involved in the cost function, the shape synthesis process is made independent of feeds. In the paper, we demonstrate the shape synthesis of a DRA with three self-resonant modes at 3 GHz.


2012 ◽  
Author(s):  
Christoph Pflaum ◽  
Zhabiz Rahimi ◽  
Fan Feng
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document