Numerical simulation study of shale gas reservoir with stress-dependent fracture conductivity using multiscale discrete fracture network model

2016 ◽  
Vol 36 (2) ◽  
pp. 202-211 ◽  
Author(s):  
Mi Lidong ◽  
Jiang Hanqiao ◽  
Mou Shanbo ◽  
Li Junjian ◽  
Pei Yanli ◽  
...  
Author(s):  
Yingzhong Yuan ◽  
Wende Yan ◽  
Fengbo Chen ◽  
Jiqiang Li ◽  
Qianhua Xiao ◽  
...  

AbstractComplex fracture systems including natural fractures and hydraulic fractures exist in shale gas reservoir with fractured horizontal well development. The flow of shale gas is a multi-scale flow process from microscopic nanometer pores to macroscopic large fractures. Due to the complexity of seepage mechanism and fracture parameters, it is difficult to realize fine numerical simulation for fractured horizontal wells in shale gas reservoirs. Mechanisms of adsorption–desorption on the surface of shale pores, slippage and Knudsen diffusion in the nanometer pores, Darcy and non-Darcy seepage in the matrix block and fractures are considered comprehensively in this paper. Through fine description of the complex fracture systems after horizontal well fracturing in shale gas reservoir, the problems of conventional corner point grids which are inflexible, directional, difficult to geometrically discretize arbitrarily oriented fractures are overcome. Discrete fracture network model based on unstructured perpendicular bisection grids is built in the numerical simulation. The results indicate that the discrete fracture network model can accurately describe fracture parameters including length, azimuth and density, and that the influences of fracture parameters on development effect of fractured horizontal well can be finely simulated. Cumulative production rate of shale gas is positively related to fracture half-length, fracture segments and fracture conductivity. When total fracture length is constant, fracturing effect is better if single fracture half-length or penetration ratio is relatively large and fracturing segments are moderate. Research results provide theoretical support for optimal design of fractured horizontal well in shale gas reservoir.


2019 ◽  
Vol 11 (03) ◽  
pp. 1950031
Author(s):  
Rui Yang ◽  
Tianran Ma ◽  
Weiqun Liu ◽  
Yijiao Fang ◽  
Luyi Xing

Accurate construction of a shale-reservoir fracture network is a prerequisite for optimizing the fracturing methods and determining shale-gas extraction schemes. Considering the influence of geological conditions, stress levels, desorption–adsorption, and fissure characteristics and distribution, establishing a shale-gas reservoir fracture-network model based on a random fracture network is significant. According to the discrete network model and Monte Carlo stochastic theory, the random fracture network of natural and artificial fractures in a shale-gas reservoir stimulation zone was constructed in this study. The porosity and permeability of the stimulation zone were calculated according to the network geometric properties. The fracture network was reconstructed, and the fissure connectivity was characterized. Numerical simulation of the seepage flow was performed for shale-gas reservoirs with different fracking-fracture combinations. The results showed that the local permeability dominated by the main fracture was the main factor that affected the initial shale-gas production efficiency. The total shale-gas productivity was mainly controlled by the effective stimulated volume. The evenly distributed secondary fracture network could effectively improve the effective stimulated volume of the stimulation zone. A 4% increase in the effective stimulated volume could improve the accumulated gas production by approximately 12%. Moreover, when the ratio of the main fracture to the secondary fracture was approximately 1:14, the accumulated gas production was optimized.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ming Yue ◽  
Xiaohe Huang ◽  
Fanmin He ◽  
Lianzhi Yang ◽  
Weiyao Zhu ◽  
...  

Volume fracturing is a key technology in developing unconventional gas reservoirs that contain nano/micron pores. Different fracture structures exert significantly different effects on shale gas production, and a fracture structure can be learned only in a later part of detection. On the basis of a multiscale gas seepage model considering diffusion, slippage, and desorption effects, a three-dimensional finite element algorithm is developed. Two finite element models for different fracture structures for a shale gas reservoir in the Sichuan Basin are established and studied under the condition of equal fracture volumes. One is a tree-like fracture, and the other is a lattice-like fracture. Their effects on the production of a fracture network structure are studied. Numerical results show that under the same condition of equal volumes, the production of the tree-like fracture is higher than that of the lattice-like fracture in the early development period because the angle between fracture branches and the flow direction plays an important role in the seepage of shale gas. In the middle and later periods, owing to a low flow rate, the production of the two structures is nearly similar. Finally, the lattice-like fracture model is regarded as an example to analyze the factors of shale properties that influence shale gas production. The analysis shows that gas production increases along with the diffusion coefficient and matrix permeability. The increase in permeability leads to a larger increase in production, but the decrease in permeability leads to a smaller decrease in production, indicating that the contribution of shale gas production is mainly fracture. The findings of this study can help better understand the influence of different shapes of fractures on the production in a shale gas reservoir.


2019 ◽  
Vol 3 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Weijun Shen ◽  
Xizhe Li ◽  
Abdullah Cihan ◽  
Xiaobing Lu ◽  
Xiaohua Liu

Sign in / Sign up

Export Citation Format

Share Document