The potential ecological risk of soil trace metals following over five decades of agronomical practices in a semi-arid environment

2017 ◽  
Vol 34 (1) ◽  
pp. 70-85 ◽  
Author(s):  
Salar Rezapour ◽  
P. Kouhinezhad ◽  
A. Samadi
Author(s):  
Feng Jiang ◽  
Bozhi Ren ◽  
Andrew Hursthouse ◽  
Yingying Zhou

In this study, we identified the sources of trace metals, investigated their spatial distribution in topsoil and assessed their potential ecological risk in the area surrounding a typical manganese mining area in Xiangtan, Hunan Province, China. The concentrations of Mn, Cu, Pb, Zn, Cd, Ni, Cr and Hg in the topsoil of the study area were measured. Except for Cr and Hg, all trace metals exceeded the corresponding soil background values for Hunan Province. The spatial variation in trace metals was visualized by GIS, and the results show that trace metals in topsoil are enriched mainly around mines and smelters. Two groups of trace metals were identified using the spatial distribution, trend analysis, Pearson’s correlation and principal component analysis: Mn, Cu, Pb, Zn, Cd and Ni can be attributed to industrial and mining activities, whereas Cr and Hg are of natural origin. The results also revealed the extent of the influence of secondary processes such as the prevailing wind direction, erosion of mine tailings and rainwater runoff play significant roles in the wider dispersal and transfer of trace metals. In addition, the environmental risk of metal pollution was evaluated by applying the geoaccumulation index and potential ecological risk index (PERI) to the study area. The accumulated PERI for metals of concern is at highest risk level in the main manganese mine area. This decreases to a moderate risk around the manganese mine area, highlighting locations for further risk management concern. Furthermore, nearly 80% of the potential ecological risk was from Cd across the study area.


2020 ◽  
Vol 20 (5) ◽  
pp. 2460-2470
Author(s):  
Jiao Li ◽  
Liuting Song ◽  
Haiyang Chen ◽  
Jin Wu ◽  
Yanguo Teng

2018 ◽  
Vol 44 ◽  
pp. 00182 ◽  
Author(s):  
Malwina Tytła ◽  
Anna Dmochowska ◽  
Dariusz Dmochowski ◽  
Kinga Jaworska

The aim of the study was to assess the ecological risk of five trace metals, i.e. Cd, Cu, Ni, Pb, Zn, accumulated in bottom sediments of young water reservoir – Bardowskiego Lagoon located in Warsaw, Poland. In this case, several indices were used, i.e. Geoaccumulation index (Igeo), Contamination factor (CF), Potential ecological risk factor (ER), Degree of contamination (DC), Pollution load index (PLI) and Risk index (RI). The average trace metals concentrations in sediments, were as follow: Zn > Pb > Cu > Cd > Ni. The obtained results revealed that bottom sediments were very highly to extremely high contaminated by Cd and the ecological risk related with this pollutant was the largest. They also indicated that water from the study area was characterized by a low ecological quality, especially due to the content of Cd and Pb. The research proves that problem of cadmium contamination in bottom sediments of young water reservoirs is real and poses a serious ecological risk.


Author(s):  
Sha Huang ◽  
Guofan Shao ◽  
Luyan Wang ◽  
Lin Wang ◽  
Lina Tang

In recent years, intensified industrialization and rapid urbanization have accelerated the accumulation of trace metals in topsoils of the Golden Triangle of Southern Fujian Province in China. Trace metals can cause adverse impacts on ecosystems and human health. In order to assess the ecological and human health risks of trace metals in the Golden Triangle region and to determine the distribution and degree of pollution of trace metals, 456 soil samples were collected from 28 districts. The concentrations of six metals (As, Cr, Cu, Ni, Pb, and Zn) were analyzed to assess ecological risk using the geoaccumulation index (Igeo) and the potential ecological risk index (RI). The United States Environmental Protection Agency (USEPA) model was applied to calculate health risk. The average soil concentrations of the six elements are ranked as follows: As < Ni < Cu < Cr < Pb < Zn. Inverse distance weighting (IDW) interpolation maps showed that Cr, Cu, Ni, and Zn are enriched in the soils of developed areas, while As and Pb are enriched in the soils of undeveloped areas. The Igeo showed that the levels of metals in most soil samples are below polluting levels. Similarly, RI values indicated that trace metals pose low potential ecological risk in the region’s soils. The Hazard Quotient (HQ) ranked the mean total noncarcinogenic risk of the six metals, for both children and adults, as follows: As > Pb > Cr > Ni > Cu >Zn. The mean carcinogenic risk (CR) of the metals in the region’s soils are ranked as follows: Cr > As > Ni. The Hazard Index (HI) values indicated that 3.7% of soils contained unsafe levels of toxic metals for children and total carcinogenic risk (TCR) values indicated that 23.3% of soils contained unsafe levels, indicating that children are facing both noncarcinogenic and carcinogenic risks from trace metals. Principal component analysis (PCA) and matrix cluster analysis were used to identify pollution sources and classified trace metals and soil samples into two and five groups, respectively. The five groups represented the effects of different land use types, including agricultural area, residential and public area, industrial area, forest, and industrial area and roadside, based on the contents of trace metals in soils. Industrial, agricultural and traffic activities attribute to the enrichment of Cr, Cu, Ni, Pb, and Zn in the region’s soils. Moreover, the accumulation of As and Pb are also attributed to atmospheric deposition. These results can contribute to a better understanding of pollution, ecological risks, and human health risks from trace metals on large regional scales like the Golden Triangle of Southern Fujian Province.


2007 ◽  
Vol 23 (5) ◽  
pp. 546-555 ◽  
Author(s):  
R. Burgos ◽  
L.J. Odens ◽  
R.J. Collier ◽  
L.H. Baumgard ◽  
M.J. VanBaale

2020 ◽  
Vol 18 (1) ◽  
pp. 77-96
Author(s):  
Hameed Alsamadany ◽  
Hassan S. Al-Zahrani ◽  
El-Metwally M. Selim ◽  
Mohsen M. El-Sherbiny

AbstractTo assess trace element concentrations (Zn, Cu, Pb, Cr, Cd and Ni) in the mangrove swamps along the Saudi coast of the Arabian Gulf, thirteen samples of surface sediment and leaves of grey mangrove, Avicennia marina were collected and analyzed. The detected trace element contents (μg g-1) in surface sediments were in the following descending order according to their mean values; Cr (49.18) > Zn (48.48) > Cu (43.06) > Pb (26.61) > Ni (22.88) > Cd (3.21). The results showed that the average concentrations of Cd and Pb exceeded their world average concentration of shale. The geo-accumulation, potential ecological risk and toxicity response indices demonstrated that trace elements have posed a considerable ecological risk, especially Cd. The inter-relationships between physico-chemical characters and trace elements suggests that grained particles of mud represent a noteworthy character in the distribution of trace elements compared to organic materials. Moreover, the results revealed that Zn was clearly bioaccumulated in leaf tissues A. marina. Dredging, landfilling, sewage effluents and oil pollution can be the paramount sources of pollution in the area under investigation.


2021 ◽  
Author(s):  
J. Riley ◽  
M.R.K. Zeale ◽  
O. Razgour ◽  
J. Turpin ◽  
G. Jones
Keyword(s):  
The Past ◽  

Sign in / Sign up

Export Citation Format

Share Document