Treatment of dye‐containing wastewater by sequencing batch reactor with powdered activated carbon addition

2000 ◽  
Vol 75 (1-2) ◽  
pp. 75-87 ◽  
Author(s):  
P.E. Lim ◽  
C.C. Er
Author(s):  
Shuokr Qarani Aziz ◽  
Dr. Hamidi Abdul Aziz ◽  
Mohd Suffian Yusoff ◽  
Amin Mojiri ◽  
Salem S. Abu Amr

Abstract Landfill leachate was treated using non-powdered activated carbon sequencing batch reactor (NPAC-SBR) and powdered activated carbon (PAC) augmented SBR (PAC-SBR) processesto examine Langmuir and Freundlichadsorption isothermsin the SBR technique.Response surface methodology (RSM) was used for the experimental design and statistical analysis.Based on the obtained results, the maximum adsorption capacitiesof ammonia nitrogen (NH3-N), color, and chemical oxygen demand (COD) for the Langmuir adsorption isotherm were 5.63 mg/g, 25.30 Pt.Co/g, and 13.21 mg/g,respectively, whereas for the Freundlichadsorption isotherm, thesewere 6 mg/g, 46.29Pt.Co/g, and 15.41 mg/g, respectively.Generally, Freundlich isotherm values for NH3-N, color, and COD were higher than Langmuir isotherm values.The NH3-N adsorption on PAC was lower than the color and COD adsorptions because a great part of NH3-Nwas biologically removed in the SBR process.Increasing aeration rate and contact times in the SBR processes increased the adsorption isotherms of NH3-N, color, and COD on PAC


2000 ◽  
Vol 42 (5-6) ◽  
pp. 171-178 ◽  
Author(s):  
S.-R. Ha ◽  
L. Qishan ◽  
S. Vinitnantharat

Treatment performance of COD in the presence of 2,4-dichlorophenol (2,4-DCP) was explored by using a biological activated carbon-sequencing batch reactor (BAC-SBR) system. Two COD levels of basic substrate were synthesized with a mixture of phenol and 2,4-dichlorophenol. Although effluent concentration was increased with reduction of sludge retention time (SRT) from 8-days to 3-days, treatment efficiency was indicated more than 90% of COD in all SRTs applied. Reactors operated with acclimated sludge could be expected to cope with quite high loading of inhibitory substances.


2008 ◽  
Vol 76 (1) ◽  
pp. 142-146 ◽  
Author(s):  
Soon-An Ong ◽  
Eiichi Toorisaka ◽  
Makoto Hirata ◽  
Tadashi Hano

2002 ◽  
Vol 46 (4-5) ◽  
pp. 131-137 ◽  
Author(s):  
Y.Z. Peng ◽  
J.F. Gao ◽  
S.Y. Wang ◽  
M.H. Sui

In order to achieve fuzzy control of denitrification in a Sequencing Batch Reactor (SBR) brewery wastewater was used as the substrate. The effects of brewery wastewater, sodium acetate, methanol and endogenous carbon source on the relationships between pH, ORP and denitrification were investigated. Also different quantities of brewery wastewater were examined. All the results indicated that the nitrate apex and nitrate knee occurred in the pH and ORP profiles at the end of denitrification. And when carbon was the limiting factor, through comparing the different increasing rate of pH whether the carbon was enough or not could be known, and when the carbon should be added again could be decided. On the basis of this, the fuzzy controller for denitrification in SBR was constructed, and the on-line fuzzy control experiments comparing three methods of carbon addition were carried out. The results showed that continuous carbon addition at a low rate might be the best method, it could not only give higher denitrification rate but also reduce the re-aeration time as much as possible. It appears promising to use pH and ORP as fuzzy control parameters to control the denitrification time and the addition of carbon.


Sign in / Sign up

Export Citation Format

Share Document