Experimental determination of the shell thickness within the primary cooling zone in the continuous casting process

2021 ◽  
pp. 1-8
Author(s):  
Katarzyna Miłkowska-Piszczek ◽  
Marcin Rywotycki ◽  
Jan Falkus ◽  
Gniewko Kwinta
2017 ◽  
Vol 24 (3) ◽  
pp. 371-378
Author(s):  
Yingshui Yu ◽  
Jinchuan Jie ◽  
Jianbo Sun ◽  
Tingju Li

AbstractIn this paper, the effect of casting speed on fabricating Al-1%Mn and Al-10%Si alloy clad slab was investigated. Before the trials with the semi-continuous casting process were conducted, a series of simulation with the engineering software FLUENT was made to forecast the influence of the casting speed on the temperature field and the liquid fraction of the clad slab. The simulation results indicated that the increase of the casting speed reduces the time in the cooling zone, thus the thickness of the Al-1%Mn solidification shell under the dividing plate gets thinner. Based on the simulation results, the Al-1%Mn alloy and Al-10%Si alloy clad slab was successfully produced by semi-continuous casting process. The interface of clad ingots was investigated by methods of metallographic and electron probe microanalysis. The tests on the interface confirmed the simulation results and showed that a clad slab of two different aluminum alloys with excellent metallurgical bonding was achieved by semi-continuous casting. According to the result of the tensile tests, the strength of the specimens remains at 110 MPa, and the fracture position located in the Al-1%Mn alloy indicates that the strength of the interface is higher than that of the Al-1%Mn alloy.


2015 ◽  
Vol 220-221 ◽  
pp. 731-736
Author(s):  
Konrad Błażej Laber ◽  
Henryk Dyja

The paper presents the results of physical modelling aimed at determining the cracking susceptibility of the selected steel grade under conditions characteristic of the continuous casting process. The material used for investigation was steel grade S355J2G3 [1]. For a study on the physical modelling of the continuous steel casting process, the GLEEBLE 3800 [2, 3], a metallurgical process simulator, was employed. The obtained results allowed establishing conditions for a continuous steel casting process that could cause cracks to form in the material being cast. Research on one of technological conditions for steelworks was carried out taking into account the problem of cracking during rolling in the initial group of the bar rolling mill.


2015 ◽  
Vol 60 (1) ◽  
pp. 239-244 ◽  
Author(s):  
K. Miłkowska-Piszczek ◽  
M. Rywotycki ◽  
J. Falkus ◽  
K. Konopka

Abstract This paper presents the findings of research conducted concerning the determination of thermal boundary conditions for the steel continuous casting process within the primary cooling zone. A cast slab - with dimensions of 1100 mm×220 mm - was analysed, and models described in references were compared with the authors’ model. The presented models were verified on the basis of an industrial database. The research problem was solved with the finite element method using the ProCAST software package.


Author(s):  
Yao Xiao ◽  
Yi Han ◽  
Ming Huang ◽  
Xin-Liang Gao ◽  
Jia-Yin Liu

Abstract The horizontal continuous casting plays a key role in the production of inner grooved copper tubes. In order to improve the accuracy of the temperature field model of the copper tubes horizontal continuous casting process, the model heat transfer coefficient was validated through temperature measurement experiment of graphite crystallizer. The finite element model of stress field evolution was established, based on considering the temperature and microstructure changes. It was found that tensile stress was generated in the outer layer of the casting billet and compressive stress was generated in the inner layer, when the casting billet entered the primary cooling zone. The paper investigated the mechanism of the liquid inlet number and shape on the microstructure and stress distribution after the casting billet was solidified. When the number of liquid inlets was 6, the ratio of the semimajor axis of ellipsoid to the short semi-axis was 3:2 and the backward tilt angle was 10°, the equivalent stress value of the casting billet was smaller and the grains were dense and uniform. This paper promotes the research of horizontal continuous casting process and provides measurable reference for improving the quality of casting billet in the further.


1973 ◽  
Vol 59 (1) ◽  
pp. 72-84 ◽  
Author(s):  
Kichinosuke MATSUNAGA ◽  
Chikakazu NAMIKI ◽  
Taiji ARAKI

Sign in / Sign up

Export Citation Format

Share Document