scholarly journals A Comparison of Models Describing Heat Transfer in the Primary Cooling Zone of a Continuous Casting Machine

2015 ◽  
Vol 60 (1) ◽  
pp. 239-244 ◽  
Author(s):  
K. Miłkowska-Piszczek ◽  
M. Rywotycki ◽  
J. Falkus ◽  
K. Konopka

Abstract This paper presents the findings of research conducted concerning the determination of thermal boundary conditions for the steel continuous casting process within the primary cooling zone. A cast slab - with dimensions of 1100 mm×220 mm - was analysed, and models described in references were compared with the authors’ model. The presented models were verified on the basis of an industrial database. The research problem was solved with the finite element method using the ProCAST software package.

2016 ◽  
Vol 61 (4) ◽  
pp. 2079-2082 ◽  
Author(s):  
K. Miłkowska-Piszczek

Abstract The values of thermophysical properties obtained from the experimental research, and those that were calculated with thermodynamic databases, are crucial parameters which were used in the numerical modelling of the steel solidification process. This paper presents the results of research on the impact of specific heat and enthalpy, along with the method of their implementation, on temperature distribution in the primary cooling zone in the continuous steel casting process. A cast slab – with dimensions of 1100 mm and 220 mm and a S235 steel grade – was analysed. A mould with a submerged entry nozzle (SEN), based on the actual dimensions of the slab continuous casting machine, was implemented. The research problem was solved with the finite element method using the ProCAST software package. Simulations were conducted using the “THERMAL + FLOW” module.


2015 ◽  
Vol 60 (1) ◽  
pp. 209-213
Author(s):  
M. Rywotycki ◽  
Z. Malinowski ◽  
K. Miłkowska-Piszczek ◽  
A. Gołdasz ◽  
B. Hadała

AbstractThe paper presents the results of research concerning the influence of radiative heat transfer on the strand and mould interface. The four models for determining the heat transfer boundary conditions within the primary cooling zone for the continuous casting process of steel have been presented. A cast slab - with dimensions of 1280×220 mm - has been analysed. Models describing the heat transfer by radiation have been specified and applied in the numerical calculations. The problem has been solved by applying the finite element method and the self-developed software. The simulation results, along with their analysis, have been presented. The developed models have been verified based on the data obtained from the measurements at the industrial facility.


2020 ◽  
Vol 178 ◽  
pp. 01032
Author(s):  
Navak Bashirov ◽  
Daniya Zaripova ◽  
Irina Bashirova

The article is devoted to calculations of load on rollers of a curvilinear continuous casting machine during bending of the ingot in the levelling section. The calculation takes into account the elastic and plastic characteristics of metal and the flexibility of the roller apparatus. Determination of load on rollers together with meeting other requirements such as reducing the cooling water consumption, minimizing the energy consumption enables optimizing the technology of slab cooling in the secondary cooling zone (SCZ) and obtaining metal of the required quality.


Author(s):  
A.G. Kolesnikov ◽  
A.V. Aldunin ◽  
M.N. Sukhostavsky

In the production of the continuous cast slabs using continuous-casting machine, the formation of axial porosity is observed. Method for determination of the minimal reduction of the workpiece during hot rolling in order to eliminate the axial defect is presented. The theoretical dependences for transformation of the axial porosity on drawing and the reduction rate of continuously cast slab during hot rolling are obtained based on assumptions.


2012 ◽  
Vol 57 (1) ◽  
pp. 385-393 ◽  
Author(s):  
M. Rywotycki ◽  
K. Miłkowska-Piszczek ◽  
L. Trębacz

Identification of the Boundary Conditions in the Continuous Casting of SteelThe results of investigations relating the determination of thermal boundary conditions for continuous casting of steel were presented in the paper. The slab of dimensions 1100 mm x 220 mm was analyzed. In numerical calculations two models were compared. The first was the simple one and it used average heat transfer coefficient in both cooling zones. The second one used complex models in primary and secondary cooling zones. The presented models were verified on basing on an industrial data base. The problem was solved by the finite element method and the commercial numerical packet ProCAST.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 972
Author(s):  
Miran Brezocnik ◽  
Uroš Župerl

Štore Steel Ltd. is one of the major flat spring steel producers in Europe. Until 2016 the company used a three-strand continuous casting machine with 6 m radius, when it was replaced by a completely new two-strand continuous caster with 9 m radius. For the comparison of the tensile strength of 41 hypoeutectoid steel grades, we conducted 1847 tensile strength tests during the first period of testing using the old continuous caster, and 713 tensile strength tests during the second period of testing using the new continuous caster. It was found that for 11 steel grades the tensile strength of the rolled material was statistically significantly lower (t-test method) in the period of using the new continuous caster, whereas all other steel grades remained the same. To improve the new continuous casting process, we decided to study the process in more detail using the Multiple Linear Regression method and the Genetic Programming approach based on 713 items of empirical data obtained on the new continuous casting machine. Based on the obtained models of the new continuous casting process, we determined the most influential parameters on the tensile strength of a product. According to the model’s analysis, the secondary cooling at the new continuous caster was improved with the installation of a self-cleaning filter in 2019. After implementing this modification, we performed an additional 794 tensile tests during the third period of testing. It was found out that, after installation of the self-cleaning filter, in 6 steel grades out of 19, the tensile strength in rolled condition improved statistically significantly, whereas all the other steel grades remained the same.


2012 ◽  
Vol 730-732 ◽  
pp. 841-846
Author(s):  
Noé Cheung ◽  
Leonardo L. Taconi ◽  
Amauri Garcia

For the correct simulation of solidification and temperature evolution in the continuous casting of steel, the determination of boundary conditions describing the heat-transfer phenomena through the strand surface, in each cooling zone of the casting machine, is extremely important. These boundary conditions are usually expressed as heat fluxes or heat transfer coefficients. In the present study, the surface temperature of the steel billet was experimentally determined in a steelmaking plant by infrared pyrometers positioned along the secondary cooling zone during real operation of a continuous casting machine. These data were used as input information into an Inverse Heat Transfer Code, implemented in this work, in order to permit the heat transfer coefficients of each spray cooling zone to be determined. The resulting simulations of temperature evolution during continuous casting have shown that the solidification was not complete at the unbending point and that there was a risk of breakout at the mold exit under the adopted operating conditions.


Sign in / Sign up

Export Citation Format

Share Document