Leaching potential of several insecticides and fungicides through disturbed clay-loam soil columns

2010 ◽  
Vol 90 (3-6) ◽  
pp. 276-285 ◽  
Author(s):  
José Fenoll ◽  
Encarnación Ruiz ◽  
Pilar Flores ◽  
Pilar Hellín ◽  
Simón Navarro
2019 ◽  
Vol 99 (1) ◽  
pp. 36-45 ◽  
Author(s):  
J.J. Miller ◽  
M.L. Owen ◽  
X. Hao ◽  
C.F. Drury ◽  
D.S. Chanasyk

Limited research exists on legacy effects of land application of feedlot manure on accumulation, redistribution, and leaching potential of water-extractable organic carbon (WEOC) in soil profiles. We sampled a clay loam soil at six depths (0–1.50 m) 2 yr after the last application (2014) of 17 continuous annual manure applications (since 1998). The amendment treatments were stockpiled (SM) or composted (CM) feedlot manure containing straw (ST) or wood-chip (WD) bedding at three application rates (13, 39, and 77 Mg ha−1dry basis). There was also an unamended control (CON) and inorganic fertilizer (IN) treatment. The soil samples were analyzed for concentrations of WEOC. The total mass or accumulation of WEOC in the soil profile was greater (P ≤ 0.05) by 1.2–3.3 times for the CM-ST-77 treatment than 12 of 14 other treatments, and it was significantly greater for amended than CON or IN treatments. The total WEOC mass was 14%–20% greater for CM-ST than CM-WD, SM-ST, and SM-WD treatments, and it was 16%–22% greater for CM than SM at the 39 and 77 Mg ha−1rates. The 77 Mg ha−1rate of the four manure type-bedding treatments had the significantly greatest (by 37%–527%) concentrations of WEOC at the six depths compared with other treatments, suggesting greater redistribution and leaching potential. Significant manure effects occurred on soil WEOC 2 yr after the manure was last applied following 17 continuous applications, and it indicated an increased risk of leaching potential at the higher application rate.


Weed Science ◽  
1968 ◽  
Vol 16 (2) ◽  
pp. 165-169 ◽  
Author(s):  
W. Powell Anderson ◽  
Anna Beth Richards ◽  
J. Wayne Whitworth

As determined by bioassay of segmented soil columns, a,a,a-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine (trifluralin), N-butyl-N-ethyl-a,a,a-trifluoro-2,6-dinitro-p-toluidine (benefin), and 4-(methylsulfonyl)-2,6-dinitro-N,N-dipropylaniline (nitralin) varied in their leachability in a clay loam soil, even though their water solubility is the same. Nitralin was by far the more easily leached, benefin was least leached, and trifluralin slightly more so than benefin. Four A-in or more of water readily leached nitralin deep enough into the soil in amounts great enough to adversely affect the root growth of sensitive crop plants. Trifluralin and benefin were leached into the soil in relatively minute amounts, and these amounts were not great enough to affect root growth of sensitive crop plants when at least 0.5-in of untreated soil separated the seed from the layer of soil in which the herbicides had been mixed. The apparent breakdown product of nitralin present in moist soil was leached as readily as nitralin.


Author(s):  
Mohammed Aajmi Salman ◽  
Jawad A. Kamal Al-Shibani

Beneficial microorganisms play a key role in the availability of ions minerals in the soil and use Randomized Complete Block Desing ( R.C.B.D ). The objective of this paper to the study effect of the of biofertilizer and miniral treatments on availability of NPK for crop corn zea mays L.Two types of biofertilizer are Bacterial Bacillus subtilis and Fungal Trichoderma harianum. Three levels of potassium fertilizer are (2.9533, 0.4000 and 2.9533). A field experiment in fall season of 2018 Has been conducted in silty clay loam soil. The experimental Results indicated that Bacillus and Trichoderma inoculation separately or together Have made a significant effect to increase in the availability of N P K in the soil compare to other treatments. The grain yield is where (2.9533, 0.4000 and 2.9533) of bacterial and fungal bio-fertilizer and potassium fertilizers respectively as compared to the control.


2012 ◽  
Vol 2 (2) ◽  
pp. 374-375
Author(s):  
Asha Buliya ◽  
◽  
K. C. Pancholi K. C. Pancholi ◽  
R. K. Paliwal R. K. Paliwal

2020 ◽  
Vol 8 (6) ◽  
pp. 1038-1041
Author(s):  
C Bharathi ◽  
P Murali Arthanari ◽  
C Chinnusamy

MethodsX ◽  
2021 ◽  
pp. 101476
Author(s):  
Andrea Acosta-Dacal ◽  
Cristian Rial-Berriel ◽  
Ricardo Díaz-Día ◽  
María del Mar Bernal-Suárez ◽  
Manuel Zumbado ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Haroon Shahzad ◽  
Muhammad Iqbal ◽  
Noman Latif ◽  
Muhammad Arshad Khan ◽  
Qudrat Ullah Khan

1965 ◽  
Vol 65 (2) ◽  
pp. 195-200 ◽  
Author(s):  
F. V. Widdowson ◽  
A. Penny

The experiment testing N residues (made on a clay-loam soil) clearly showed that N applied for potatoes benefited the following wheat crop, but that N applied for wheat benefited the following potato crop little. There were no worth-while 1. An experiment on a clay-loam soil measured responses to three amounts of nitrogen on alternate crops of wheat and potatoes; these dressings were tested in all combinations with three rates of N applied 1 and 2 years previously. Nitrogen applied for potatoes consistently increased yields of following wheat. The residue from applying 1·5 cwt. N/acre for potatoes was equivalent to topdressing the wheat with 0·55 cwt. N/acre; the value of the residue was decreased by applying N to the wheat. Potato yields were increased little by applying N to the preceding wheat crop and the residues were of little significance when compared with the responses to new N. There was no gain from N applied 2 years previously for either crop.


Sign in / Sign up

Export Citation Format

Share Document