scholarly journals Positive solutions to the sublinear Lane-Emden equation are isolated

Author(s):  
Lorenzo Brasco ◽  
Guido De Philippis ◽  
Giovanni Franzina
2020 ◽  
Vol 20 (2) ◽  
pp. 339-359
Author(s):  
Huyuan Chen ◽  
Xia Huang ◽  
Feng Zhou

AbstractOur purpose in this paper is to study positive solutions of the Lane–Emden equation-\Delta u=Vu^{p}\quad\text{in }\mathbb{R}^{N}\setminus\{0\},perturbed by a nonhomogeneous potential V, with p\in(\frac{N}{N-2},p_{c}), where {p_{c}} is the Joseph–Ludgren exponent. We construct a sequence of fast and slow decaying solutions with appropriated restrictions for V.


2021 ◽  
Vol 11 (1) ◽  
pp. 128-140
Author(s):  
Yong Ma ◽  
Ying Wang ◽  
César T. Ledesma

Abstract Our purpose of this paper is to study positive solutions of Lane-Emden equation − Δ u = V u p i n R N ∖ { 0 } $$\begin{array}{} -{\it\Delta} u = V u^p\quad {\rm in}\quad \mathbb{R}^N\setminus\{0\} \end{array}$$ (0.1) perturbed by a non-homogeneous potential V when p ∈ [ p c , N + 2 N − 2 ) , $\begin{array}{} p\in [p_c, \frac{N+2}{N-2}), \end{array}$ where pc is the Joseph-Ludgren exponent. When p ∈ ( N N − 2 , p c ) , $\begin{array}{} p\in (\frac{N}{N-2}, p_c), \end{array}$ the fast decaying solution could be approached by super and sub solutions, which are constructed by the stability of the k-fast decaying solution wk of −Δ u = up in ℝ N ∖ {0} by authors in [9]. While the fast decaying solution wk is unstable for p ∈ ( p c , N + 2 N − 2 ) , $\begin{array}{} p\in (p_c, \frac{N+2}{N-2}), \end{array}$ so these fast decaying solutions seem not able to disturbed like (0.1) by non-homogeneous potential V. A surprising observation that there exists a bounded sub solution of (0.1) from the extremal solution of − Δ u = u N + 2 N − 2 $\begin{array}{} -{\it\Delta} u = u^{\frac{N+2}{N-2}} \end{array}$ in ℝ N and then a sequence of fast decaying solutions and slow decaying solutions could be derived under appropriated restrictions for V.


2020 ◽  
Vol 10 (1) ◽  
pp. 494-500
Author(s):  
Ying Wang ◽  
Yuanhong Wei

Abstract Our purpose of this paper is to consider Liouville property for the fractional Lane-Emden equation $$\begin{array}{} \displaystyle (-{\it\Delta})^\alpha u = u^p\quad {\rm in}\quad {\it\Omega},\qquad u = 0\quad {\rm in}\quad \mathbb{R}^N\setminus {\it\Omega}, \end{array}$$ where α ∈ (0, 1), N ≥ 1, p > 0 and Ω ⊂ ℝN–1 × [0, +∞) is an unbounded domain satisfying that Ωt := {x′ ∈ ℝN–1 : (x′, t) ∈ Ω} with t ≥ 0 has increasing monotonicity, that is, Ωt ⊂ Ωt′ for t′ ≥ t. The shape of Ω∞ := limt→∞ Ωt in ℝN–1 plays an important role to obtain the nonexistence of positive solutions for the fractional Lane-Emden equation.


1993 ◽  
Vol 18 (12) ◽  
pp. 2071-2106
Author(s):  
Philippe Clément ◽  
Raúl Manásevich ◽  
Enzo Mitidieri

2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


Sign in / Sign up

Export Citation Format

Share Document