On the Mean and Variance of a Certain Conditional Distribution When the Underlying Distribution is Multivariate Normal

1975 ◽  
Vol 4 (12) ◽  
pp. 1161-1166
Author(s):  
Dallas Anderson
Author(s):  
Kaisa Nyberg

The goal of this work is to propose a related-key model for linear cryptanalysis. We start by giving the mean and variance of the difference of sampled correlations of two Boolean functions when using the same sample of inputs to compute both correlations. This result is further extended to determine the mean and variance of the difference of correlations of a pair of Boolean functions taken over a random data sample of fixed size and over a random pair of Boolean functions. We use the properties of the multinomial distribution to achieve these results without independence assumptions. Using multivariate normal approximation of the multinomial distribution we obtain that the distribution of the difference of related-key correlations is approximately normal. This result is then applied to existing related-key cryptanalyses. We obtain more accurate right-key and wrong-key distributions and remove artificial assumptions about independence of sampled correlations. We extend this study to using multiple linear approximations and propose a Χ2-type statistic, which is proven to be Χ2 distributed if the linear approximations are independent. We further examine this statistic for multidimensional linear approximation and discuss why removing the assumption about independence of linear approximations does not work in the related-key setting the same way as in the single-key setting.


Author(s):  
Hung Phuoc Truong ◽  
Thanh Phuong Nguyen ◽  
Yong-Guk Kim

AbstractWe present a novel framework for efficient and robust facial feature representation based upon Local Binary Pattern (LBP), called Weighted Statistical Binary Pattern, wherein the descriptors utilize the straight-line topology along with different directions. The input image is initially divided into mean and variance moments. A new variance moment, which contains distinctive facial features, is prepared by extracting root k-th. Then, when Sign and Magnitude components along four different directions using the mean moment are constructed, a weighting approach according to the new variance is applied to each component. Finally, the weighted histograms of Sign and Magnitude components are concatenated to build a novel histogram of Complementary LBP along with different directions. A comprehensive evaluation using six public face datasets suggests that the present framework outperforms the state-of-the-art methods and achieves 98.51% for ORL, 98.72% for YALE, 98.83% for Caltech, 99.52% for AR, 94.78% for FERET, and 99.07% for KDEF in terms of accuracy, respectively. The influence of color spaces and the issue of degraded images are also analyzed with our descriptors. Such a result with theoretical underpinning confirms that our descriptors are robust against noise, illumination variation, diverse facial expressions, and head poses.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 568
Author(s):  
Sabine G. Gebhardt-Henrich ◽  
Ariane Stratmann ◽  
Marian Stamp Dawkins

Group level measures of welfare flocks have been criticized on the grounds that they give only average measures and overlook the welfare of individual animals. However, we here show that the group-level optical flow patterns made by broiler flocks can be used to deliver information not just about the flock averages but also about the proportion of individuals in different movement categories. Mean optical flow provides information about the average movement of the whole flock while the variance, skew and kurtosis quantify the variation between individuals. We correlated flock optical flow patterns with the behavior and welfare of a sample of 16 birds per flock in two runway tests and a water (latency-to-lie) test. In the runway tests, there was a positive correlation between the average time taken to complete the runway and the skew and kurtosis of optical flow on day 28 of flock life (on average slow individuals came from flocks with a high skew and kurtosis). In the water test, there was a positive correlation between the average length of time the birds remained standing and the mean and variance of flock optical flow (on average, the most mobile individuals came from flocks with the highest mean). Patterns at the flock level thus contain valuable information about the activity of different proportions of the individuals within a flock.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 955
Author(s):  
Alamir Elsayed ◽  
Mohamed El-Beltagy ◽  
Amnah Al-Juhani ◽  
Shorooq Al-Qahtani

The point kinetic model is a system of differential equations that enables analysis of reactor dynamics without the need to solve coupled space-time system of partial differential equations (PDEs). The random variations, especially during the startup and shutdown, may become severe and hence should be accounted for in the reactor model. There are two well-known stochastic models for the point reactor that can be used to estimate the mean and variance of the neutron and precursor populations. In this paper, we reintroduce a new stochastic model for the point reactor, which we named the Langevin point kinetic model (LPK). The new LPK model combines the advantages, accuracy, and efficiency of the available models. The derivation of the LPK model is outlined in detail, and many test cases are analyzed to investigate the new model compared with the results in the literature.


1991 ◽  
Vol 28 (3) ◽  
pp. 529-538
Author(s):  
M. P. Quine

Points arrive in succession on an interval and immediately ‘cover' a region of length ½ to each side (less if they are close to the boundary or to a covered part). The location of a new point is uniformly distributed on the uncovered parts. We study the mean and variance of the total number of points ever formed, in particular as a → 0, in which case we also establish asymptotic normality.


1969 ◽  
Vol 13 (2) ◽  
pp. 117-126 ◽  
Author(s):  
Derek J. Pike

Robertson (1960) used probability transition matrices to estimate changes in gene frequency when sampling and selection are applied to a finite population. Curnow & Baker (1968) used Kojima's (1961) approximate formulae for the mean and variance of the change in gene frequency from a single cycle of selection applied to a finite population to develop an iterative procedure for studying the effects of repeated cycles of selection and regeneration. To do this they assumed a beta distribution for the unfixed gene frequencies at each generation.These two methods are discussed and a result used in Kojima's paper is proved. A number of sets of calculations are carried out using both methods and the results are compared to assess the accuracy of Curnow & Baker's method in relation to Robertson's approach.It is found that the one real fault in the Curnow-Baker method is its tendency to fix too high a proportion of the genes, particularly when the initial gene frequency is near to a fixation point. This fault is largely overcome when more individuals are selected. For selection of eight or more individuals the Curnow-Baker method is very accurate and appreciably faster than the transition matrix method.


Sign in / Sign up

Export Citation Format

Share Document