E-Bayesian estimation for system reliability and availability analysis based on exponential distribution

2016 ◽  
Vol 46 (8) ◽  
pp. 6221-6241 ◽  
Author(s):  
V. A. Gonzalez-Lopez ◽  
Ramin Gholizadeh ◽  
Christian E. Galarza
2018 ◽  
Vol 35 (9) ◽  
pp. 2080-2091 ◽  
Author(s):  
Mahesh Narayan Dhawalikar ◽  
V. Mariappan ◽  
P.K. Srividhya ◽  
Vishal Kurtikar

Purpose Degraded failures and sudden critical failures are quite prevalent in industries. Degradation processes commonly belong to Weibull family and critical failures are found to follow exponential distribution. Therefore, it becomes important to carry out reliability and availability analysis of such systems. From the reported literature, it is learnt that models are available for the situations where the degraded failures as well as critical failures follow exponential distribution. The purpose of this paper is to present models suitable for reliability and availability analysis of systems where the degradation process follows Weibull distribution and critical failures follow exponential distribution. Design/methodology/approach The research uses Semi-Markov modeling using the approach of method of stages which is suitable when the failure processes follow Weibull distribution. The paper considers various states of the system and uses state transition diagram to present the transition of the system among good state, degraded state and failed state. Method of stages is used to convert the semi-Markov model to Markov model. The number of stages calculated in Method of stages is usually not an integer value which needs to be round off. Method of stages thus suffers from the rounding off error. A unique approach is proposed to arrive at failure rates to reduce the error in method of stages. Periodic inspection and repairs of systems are commonly followed in industries to take care of system degradation. This paper presents models to carry out reliability and availability analysis of the systems including the case where degraded failures can be arrested by appropriate inspection and repair. Findings The proposed method for estimating the degraded failure rate can be used to reduce the error in method of stages. The models and the methodology are suitable for reliability and availability analysis of systems involving degradation which is very common in systems involving moving parts. These models are very suitable in accurately estimating the system reliability and availability which is very important in industry. The models conveniently cover the cases of degraded systems for which the model proposed by Hokstad and Frovig is not suitable. Research limitations/implications The models developed consider the systems where the repair phenomenon follows exponential and the failure mechanism follows Weibull with shape parameter greater than 1. Practical implications These models can be suitably used to deal with reliability and availability analysis of systems where the degradation process is non-exponential. Thus, the models can be practically used to meet the industrial requirement of accurately estimating the reliability and availability of degradable systems. Originality/value A unique approach is presented in this paper for estimating degraded failure rate in the method of stages which reduces the rounding error. The models presented for reliability and availability analyses can deal with degradable systems where the degradation process follows Weibull distribution, which is not possible with the model presented by Hokstad and Frovig.


Author(s):  
M. A. El-Damcese ◽  
M. S. Shama

This paper investigates reliability and availability of a repairable system with two types of failure. Let failure rate and repair rate of [type1, type2] components are assumed to be exponentially distributed. The expressions of availability and reliability characteristics such as the system reliability and the mean time to failure are derived. We used several cases to analyze graphically the effect of various system parameters on the reliability system and availability system.


Author(s):  
TYMOTEUSZ BUDNY

In the paper we calculate reliability of radar system in Vessel Traffic Services Zatoka. Reliability and availability of the system were calculated on the base of reliability of the system components. There was assumed that system is a series-"m out of n". Conclusion is that appropriate evaluation of system reliability and availability is decisive in choosing service support location.


Author(s):  
M. H. Hu

Abstract This paper presents an analysis method for reliability measures of a system with step changes in failure and repair rates. Both failure and repair time have exponential function of time. Such a system is called a stepwise exponential distribution system. This kind of failure process can take place in various equipments. This paper deals with the system having components in series arrangement. Bayesian statistics is used in defining prior and posterior probability density functions of failure and repair rates. These functions provide information for the estimation of reliability measures: 1) failure and repair rates, 2) mean time to failure, 3) mean time to repair, 4) reliability function and 5) availability. A sample problem is given to illustrate the methodology. The Bayesian estimation of the stepwise exponential distribution model is useful in the planning of equipment predictive maintenance.


Author(s):  
Nagaraj G Cholli ◽  
Khalid Amin Shiekh ◽  
G N Srinivasan

Software rejuvenation has become a new horizon for increasing the system reliability and availability in a long run. One of the concept in software rejuvenation policy involves rebooting the system by suspending the disk and capturing the images of processes currently running in the system. In our rejuvenation policy we make use an intelligent time and load algorithm for deciding the optimal rejuvenation period. Since at any given time there can be n number of processes running in the system with different physical memory utilizations and variable workloads running, it becomes very vital to thoroughly test the system with highly chaotic and disruptive workloads. For this we use some non-traditional form of testing which we call non deterministic system testing (NDST) to test different features and conditions of system


Sign in / Sign up

Export Citation Format

Share Document